4 resultados para plant optimization

em Universidad de Alicante


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, we propose a new methodology for the large scale optimization and process integration of complex chemical processes that have been simulated using modular chemical process simulators. Units with significant numerical noise or large CPU times are substituted by surrogate models based on Kriging interpolation. Using a degree of freedom analysis, some of those units can be aggregated into a single unit to reduce the complexity of the resulting model. As a result, we solve a hybrid simulation-optimization model formed by units in the original flowsheet, Kriging models, and explicit equations. We present a case study of the optimization of a sour water stripping plant in which we simultaneously consider economics, heat integration and environmental impact using the ReCiPe indicator, which incorporates the recent advances made in Life Cycle Assessment (LCA). The optimization strategy guarantees the convergence to a local optimum inside the tolerance of the numerical noise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optimization of chemical processes where the flowsheet topology is not kept fixed is a challenging discrete-continuous optimization problem. Usually, this task has been performed through equation based models. This approach presents several problems, as tedious and complicated component properties estimation or the handling of huge problems (with thousands of equations and variables). We propose a GDP approach as an alternative to the MINLP models coupled with a flowsheet program. The novelty of this approach relies on using a commercial modular process simulator where the superstructure is drawn directly on the graphical use interface of the simulator. This methodology takes advantage of modular process simulators (specially tailored numerical methods, reliability, and robustness) and the flexibility of the GDP formulation for the modeling and solution. The optimization tool proposed is successfully applied to the synthesis of a methanol plant where different alternatives are available for the streams, equipment and process conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With advances in the synthesis and design of chemical processes there is an increasing need for more complex mathematical models with which to screen the alternatives that constitute accurate and reliable process models. Despite the wide availability of sophisticated tools for simulation, optimization and synthesis of chemical processes, the user is frequently interested in using the ‘best available model’. However, in practice, these models are usually little more than a black box with a rigid input–output structure. In this paper we propose to tackle all these models using generalized disjunctive programming to capture the numerical characteristics of each model (in equation form, modular, noisy, etc.) and to deal with each of them according to their individual characteristics. The result is a hybrid modular–equation based approach that allows synthesizing complex processes using different models in a robust and reliable way. The capabilities of the proposed approach are discussed with a case study: the design of a utility system power plant that has been decomposed into its constitutive elements, each treated differently numerically. And finally, numerical results and conclusions are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are many models in the literature that have been proposed in the last decades aimed at assessing the reliability, availability and maintainability (RAM) of safety equipment, many of them with a focus on their use to assess the risk level of a technological system or to search for appropriate design and/or surveillance and maintenance policies in order to assure that an optimum level of RAM of safety systems is kept during all the plant operational life. This paper proposes a new approach for RAM modelling that accounts for equipment ageing and maintenance and testing effectiveness of equipment consisting of multiple items in an integrated manner. This model is then used to perform the simultaneous optimization of testing and maintenance for ageing equipment consisting of multiple items. An example of application is provided, which considers a simplified High Pressure Injection System (HPIS) of a typical Power Water Reactor (PWR). Basically, this system consists of motor driven pumps (MDP) and motor operated valves (MOV), where both types of components consists of two items each. These components present different failure and cause modes and behaviours, and they also undertake complex test and maintenance activities depending on the item involved. The results of the example of application demonstrate that the optimization algorithm provide the best solutions when the optimization problem is formulated and solved considering full flexibility in the implementation of testing and maintenance activities taking part of such an integrated RAM model.