4 resultados para piezoelectric devices
em Universidad de Alicante
Resumo:
By computing spin-polarized electronic transport across a finite zigzag graphene ribbon bridging two metallic graphene electrodes, we demonstrate, as a proof of principle, that devices featuring 100% magnetoresistance can be built entirely out of carbon. In the ground state a short zigzag ribbon is an antiferromagnetic insulator which, when connecting two metallic electrodes, acts as a tunnel barrier that suppresses the conductance. The application of a magnetic field makes the ribbon ferromagnetic and conductive, increasing dramatically the current between electrodes. We predict large magnetoresistance in this system at liquid nitrogen temperature and 10 T or at liquid helium temperature and 300 G.
Resumo:
We propose an original method to geoposition an audio/video stream with multiple emitters that are at the same time receivers of the mixed signal. The achieved method is suitable for those comes where a list of positions within a designated area is encoded with a degree of precision adjusted to the visualization capabilities; and is also easily extensible to support new requirements. This method extends a previously proposed protocol, without incurring in any performance penalty.
Resumo:
In this paper, we propose an original method to geoposition an audio/video stream with multiple emitters that are at the same time receivers of the mixed signal. The obtained method is suitable when a list of positions within a known area is encoded with precision tailored to the visualization capabilities of the target device. Nevertheless, it is easily adaptable to new precision requirements, as well as parameterized data precision. This method extends a previously proposed protocol, without incurring in any performance penalty.
Resumo:
Possible drawbacks of microreactors are inefficient reactant mixing and the clogging of microchannels when solid-forming reactions are carried out or solid (catalysts) suspensions are used. Ultrasonic irradiation has been successfully implemented for solving these problems in microreactor configurations ranging from capillaries immersed in ultrasonic baths to devices with miniaturized piezoelectric transducers. Moving forward in process intensification and sustainable development, the acoustic energy implementation requires a strategy to optimize the microreactor from an ultrasound viewpoint during its design. In this work, we present a simple analytical model that can be used as a guide to achieving a proper acoustic design of stacked microreactors. An example of this methodology was demonstrated through finite element analysis and it was compared with an experimental study found in the literature.