3 resultados para panel data modeling
em Universidad de Alicante
Resumo:
Several studies have analyzed discretionary accruals to address earnings-smoothing behaviors in the banking industry. We argue that the characteristic link between accruals and earnings may be nonlinear, since both the incentives to manipulate income and the practical way to do so depend partially on the relative size of earnings. Given a sample of 15,268 US banks over the period 1996–2011, the main results in this paper suggest that, depending on the size of earnings, bank managers tend to engage in earnings-decreasing strategies when earnings are negative (“big-bath”), use earnings-increasing strategies when earnings are positive, and use provisions as a smoothing device when earnings are positive and substantial (“cookie-jar” accounting). This evidence, which cannot be explained by the earnings-smoothing hypothesis, is consistent with the compensation theory. Neglecting nonlinear patterns in the econometric modeling of these accruals may lead to misleading conclusions regarding the characteristic strategies used in earnings management.
Resumo:
The objective of this paper is to estimate technical efficiency in retailing; and the influence of inventory investment, wage levels, and firm age on this efficiency. We use the output supermarket chains’ sales volume, calculated isolating the retailer price effect on its sales revenue. This output allows us to estimate a strictly technical concept of efficiency. The methodology is based on the estimation of a stochastic parametric function. The empirical analyses applied to panel data on a sample of 42 supermarket chains between 2000 and 2002 show that inventory investment and wage level have an impact on technical efficiency. In comparison, the effect of these factors on efficiency calculated through a monetary output (sales revenue) shows some differences that could be due to aspects related to product prices.
Resumo:
Context: Global Software Development (GSD) allows companies to take advantage of talent spread across the world. Most research has been focused on the development aspect. However, little if any attention has been paid to the management of GSD projects. Studies report a lack of adequate support for management’s decisions made during software development, further accentuated in GSD since information is scattered throughout multiple factories, stored in different formats and standards. Objective: This paper aims to improve GSD management by proposing a systematic method for adapting Business Intelligence techniques to software development environments. This would enhance the visibility of the development process and enable software managers to make informed decisions regarding how to proceed with GSD projects. Method: A combination of formal goal-modeling frameworks and data modeling techniques is used to elicitate the most relevant aspects to be measured by managers in GSD. The process is described in detail and applied to a real case study throughout the paper. A discussion regarding the generalisability of the method is presented afterwards. Results: The application of the approach generates an adapted BI framework tailored to software development according to the requirements posed by GSD managers. The resulting framework is capable of presenting previously inaccessible data through common and specific views and enabling data navigation according to the organization of software factories and projects in GSD. Conclusions: We can conclude that the proposed systematic approach allows us to successfully adapt Business Intelligence techniques to enhance GSD management beyond the information provided by traditional tools. The resulting framework is able to integrate and present the information in a single place, thereby enabling easy comparisons across multiple projects and factories and providing support for informed decisions in GSD management.