2 resultados para optical reflectance spectra

em Universidad de Alicante


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Light sources with three spectral bands in specific spectral positions are known to have high-color-discrimination capability. W. A. Thornton hypothesized that they may also enhance color discrimination for color-deficient observers. This hypothesis was tested here by comparing the Rösch–MacAdam color volume for color-deficient observers rendered by three of these singular spectra, two reported previously and one derived in this paper by maximization of the Rösch–MacAdam color solid. It was found that all illuminants tested enhance discriminability for deuteranomalous observers, but their impact on other congenital deficiencies was variable. The best illuminant was the one derived here, as it was clearly advantageous for the two red–green anomalies and for tritanopes and almost neutral for red–green dichromats. We conclude that three-band spectra with high-color-discrimination capability for normal observers do not necessarily produce comparable enhancements for color-deficient observers, but suitable spectral optimization clearly enhances the vision of the color deficient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Gaia-ESO Survey is a large public spectroscopic survey that aims to derive radial velocities and fundamental parameters of about 105 Milky Way stars in the field and in clusters. Observations are carried out with the multi-object optical spectrograph FLAMES, using simultaneously the medium-resolution (R ~ 20 000) GIRAFFE spectrograph and the high-resolution (R ~ 47 000) UVES spectrograph. In this paper we describe the methods and the software used for the data reduction, the derivation of the radial velocities, and the quality control of the FLAMES-UVES spectra. Data reduction has been performed using a workflow specifically developed for this project. This workflow runs the ESO public pipeline optimizing the data reduction for the Gaia-ESO Survey, automatically performs sky subtraction, barycentric correction and normalisation, and calculates radial velocities and a first guess of the rotational velocities. The quality control is performed using the output parameters from the ESO pipeline, by a visual inspection of the spectra and by the analysis of the signal-to-noise ratio of the spectra. Using the observations of the first 18 months, specifically targets observed multiple times at different epochs, stars observed with both GIRAFFE and UVES, and observations of radial velocity standards, we estimated the precision and the accuracy of the radial velocities. The statistical error on the radial velocities is σ ~ 0.4 km s-1 and is mainly due to uncertainties in the zero point of the wavelength calibration. However, we found a systematic bias with respect to the GIRAFFE spectra (~0.9 km s-1) and to the radial velocities of the standard stars (~0.5 km s-1) retrieved from the literature. This bias will be corrected in the future data releases, when a common zero point for all the set-ups and instruments used for the survey is be established.