4 resultados para opportunities
em Universidad de Alicante
Resumo:
Public health has in the past been a problem orientated discipline which has devoted its energies mainly to defining, prioritizing and trying to solve problems. This means paying attention to the short-term. If we examine the rises and falls of public health as a discipline with its successes and failures in gaining health, and if we compare public health with successful organisations, the need for changing the emphasis from problems to opportunities becomes apparent. In this endeavour for the future, strategic thinking and policy analysis seem appropriate new tools for public health professionals. The economic crisis and the weakness of the welfare state are presented as major opportunities for public health to achieve health gain in Europe.
Resumo:
A heterofunctional support for enzyme immobilization may be defined as that which possesses several distinct functionalities on its surface able to interact with a protein. We will focus on those supports in which a final covalent attachment between the enzyme and the support is achieved. Heterofunctionality sometimes has been featured in very old immobilization techniques, even though in many instances it has been overlooked, giving rise to some misunderstandings. In this respect, glutaraldehyde-activated supports are the oldest multifunctional supports. Their matrix has primary amino groups, the hydrophobic glutaraldehyde chain, and can covalently react with the primary amino groups of the enzyme. Thus, immobilization may start (first event of the immobilization) via different causes and may involve different positions of the enzyme surface depending on the activation degree and immobilization conditions. Other “classical” heterofunctional supports are epoxy commercial supports consisting of reactive covalent epoxy groups on a hydrophobic matrix. Immobilization is performed at high ionic strength to permit protein adsorption, so that covalent attachment may take place at a later stage. Starting from these old immobilization techniques, tailor-made heterofunctional supports have been designed to permit a stricter control of the enzyme immobilization process. The requirement is to find conditions where the main covalent reactive moieties may have very low reactivity toward the enzyme. In this Review we will discuss the suitable properties of the groups able to give the covalent attachment (intending a multipoint covalent attachment), and the groups able to produce the first enzyme adsorption on the support. Prospects, limitations, and likely pathways for the evolution (e.g., coupling of site-directed mutagenesis and thiol heterofunctional supports of enzyme immobilization on heterofunctional supports) will be discussed in this Review.
Realizing the Commercial Potential of Hierarchical Zeolites: New Opportunities in Catalytic Cracking
Resumo:
Many approaches to mesoporous zeolites have been reported. The preparation of mesoporous zeolite Y, as the most widely used zeolite in catalysis, its properties, and its application in fluid catalytic cracking (FCC) and hydrocracking are reviewed. Finally, the scale-up and use of mesostrutured zeolite Y on an industrial scale are described, as the first commercial application of hierarchical zeolites.
Resumo:
The aim of this paper is to study the activities of ceria–zirconia and copper/ceria–zirconia catalysts, comparing with a commercial platinum/alumina catalyst, for soot combustion reaction under different gas atmospheres and loose contact mode (simulating diesel exhaust conditions), in order to analyse the kinetics and to deduce mechanistic implications. Activity tests were performed under isothermal and TPR conditions. The NO oxidation to NO2 was studied as well. It was checked that mass transfer limitations were not influencing the rate measurements. Global activation energies for the catalysed and non-catalysed soot combustion were calculated and properly discussed. The results reveal that ceria-based catalysts greatly enhance their activities under NOx/O2 between 425 °C and 450 °C, due to the “active oxygen”-assisted soot combustion. Remarkably, copper/ceria–zirconia shows a slightly higher soot combustion rate than the Pt-based catalyst (under NOx/O2, at 450 °C).