3 resultados para obligate seeder,
em Universidad de Alicante
Resumo:
Soil enzymes are critical to soil nutrient cycling function but knowledge on the factors that control their response to major disturbances such as wildfires remains very limited. We evaluated the effect of fire-related plant functional traits (resprouting and seeding) on the resistance and resilience to fire of two soil enzyme activities involved in phosphorus and carbon cycling (acid phosphatase and β-glucosidase) in a Mediterranean shrublands in SE Spain. Using experimental fires, we compared four types of shrubland microsites: SS (vegetation patches dominated by seeder species), RR (patches dominated by resprouter species), SR (patches co-dominated by seeder and resprouter species), and IP (shrub interpatches). We assessed pre- and post-fire activities of the target soil enzymes, available P, soil organic C, and plant cover dynamics over three years after the fire. Post-fire regeneration functional groups (resprouter, seeder) modulated both pre- and post-fire activity of acid phosphatase and β-glucosidase, with higher activity in RR and SR patches than in SS patches and IP. However, we found no major differences in enzyme resistance and resilience between microsite types, except for a trend towards less resilience in SS patches. Fire similarly reduced the activity of both enzymes. However, acid phosphatase and β-glucosidase showed contrasting post-fire dynamics. While β-glucosidase proved to be rather resilient to fire, fully recovering three years after fire, acid phosphatase showed no signs of recovery in that period. Overall, the results indicate a positive influence of resprouter species on soil enzyme activity that is very resistant to fire. Long-lasting decrease in acid phosphatase activity probably resulted from the combined effect of P availability and post-fire drought. Our results provide insights on how plant functional traits modulate soil biochemical and microbiological response to fire in Mediterranean fire-prone shrublands.
Resumo:
This study analyses the effect of successional stage after farmland terrace abandonment on post-fire plant recovery in a Mediterranean landscape. Specific objectives of the study were to (1) compare fuel characteristics and fire severity in three successional stages after farmland abandonment – dry grassland, dense shrubland and pine stands; (2) analyse the effect of pre-fire successional stage and fire severity on vegetation recovery and (3) analyse the relative vulnerability (i.e. potential for ecosystem shift and soil degradation) to wildfires of the successional stages. We assessed 30 abandoned terraces (15 unburned and 15 burned), with diverse successional stages, on the Xortà Range (south-east Spain). Post-fire recovery was measured 1, 4 and 7 years after fire. The successional stages varied in aboveground biomass, litter amount, vertical structure and continuity of plant cover, and flammability. Dry grassland showed the lowest fire severity, whereas no differences in severity were found between shrubland and pine stands. One year after fire, plant cover was inversely related to fire severity; this relationship attenuated with time after fire. Post-fire recovery of pine stands and shrubland led in both cases to shrublands, contributing to landscape homogenisation. The pine stands showed the largest changes in composition due to fire and the lowest post-fire plant recovery – a sign of high vulnerability to fire.
Resumo:
Standing dead biomass retention is considered one of the most relevant fuel structural traits to affect plant flammability. However, very little is known about the biological significance of this trait and its distribution between different functional groups. Our aim was to analyse how the proportion of dead biomass produced in Mediterranean species is related to the successional niche of species (early-, mid- and late-successional stages) and the regeneration strategy of species (seeders and resprouters). We evaluated biomass distribution by size classes and standing dead biomass retention in nine dominant species from the Mediterranean Basin in different development stages (5, 9, 14 and 26 years since the last fire). The results revealed significant differences in the standing dead biomass retention of species that presented a distinct successional niche or regeneration strategy. These differences were restricted to the oldest ages studied (>9 years). Tree and small tree resprouters, typical in late-successional stages, presented slight variations with age and a less marked trend to retain dead biomass, while seeder shrubs and dwarf shrubs, characteristic of early-successional stages, showed high dead biomass loads. Our results suggest that the species that tend to retain more dead branches are colonising species that may promote fire in early-successional stages.