5 resultados para nitrogen-doped

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanostructured carbons with relatively high nitrogen content (3–8%) and different micro and mesoporosity ratio were prepared by activation of polyaniline (PANI) with a ZnCl2–NaCl mixture in the proportion of the eutectic (melting point 270 °C). It was found that the activated carbons consisted of agglomerated nanoparticles. ZnCl2 plays a key role in the development of microporosity and promotes the binding between PANI nanoparticles during heat treatment, whereas NaCl acts as a template for the development of mesoporosity of larger size. Carbons with high micropore and mesopore volumes, above 0.6 and 0.8 cm3/g, respectively, have been obtained. Furthermore, these materials have been tested for CO2 capture and storage at pressures up to 4 MPa. The results indicate that the nitrogen groups present in the surface do not seem to affect to the amount of CO2 adsorbed, not detecting strong interactions between CO2 molecules and nitrogen functional groups of the carbon, which are mainly pyridinic and pyrrolic groups.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CO2 adsorption has been measured in different types of graphitic nanostructures (MWCNTs, acid treated MWCNTs, graphene nanoribbons and pure graphene) in order to evaluate the effect of the different defective regions/conformations in the adsorption process, i.e., sp3 hybridized carbon, curved regions, edge defects, etc. This analysis has been performed both in pure carbon and nitrogen-doped nanostructures in order to monitor the effect of surface functional groups on surface created after using different treatments (i.e., acid treatment and thermal expansion of the MWCNTs), and study their adsorption properties. Interestingly, the presence of exposed defective regions in the acid treated nanostructures (e.g., uncapped nanotubes) gives rise to an improvement in the amount of CO2 adsorbed; the adsorption process being completely reversible. For N-doped nanostructures, the adsorption capacity is further enhanced when compared to the pure carbon nanotubes after the tubes were unzipped. The larger proportion of defect sites and curved regions together with the presence of stronger adsorbent–adsorbate interactions, through the nitrogen surface groups, explains their larger adsorption capacity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With global warming becoming one of the main problems our society is facing nowadays, there is an urgent demand to develop materials suitable for CO2 storage as well as for gas separation. Within this context, hierarchical porous structures are of great interest for in-flow applications because of the desirable combination of an extensive internal reactive surface along narrow nanopores with facile molecular transport through broad “highways” leading to and from these pores. Deep eutectic solvents (DESs) have been recently used in the synthesis of carbon monoliths exhibiting a bicontinuous porous structure composed of continuous macroporous channels and a continuous carbon network that contains a certain microporosity and provides considerable surface area. In this work, we have prepared two DESs for the preparation of two hierarchical carbon monoliths with different compositions (e.g., either nitrogen-doped or not) and structure. It is worth noting that DESs played a capital role in the synthesis of hierarchical carbon monoliths not only promoting the spinodal decomposition that governs the formation of the bicontinuous porous structure but also providing the precursors required to tailor the composition and the molecular sieve structure of the resulting carbons. We have studied the performance of these two carbons for CO2, N2, and CH4 adsorption in both monolithic and powdered form. We have also studied the selective adsorption of CO2 versus CH4 in equilibrium and dynamic conditions. We found that these materials combined a high CO2-sorption capacity besides an excellent CO2/N2 and CO2/CH4 selectivity and, interestingly, this performance was preserved when processed in both monolithic and powdered form.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Different types of crystalline carbon nanomaterials were used to reinforce polyaniline for use in electromechanical bilayer bending actuators. The objective is to analyze how the different graphitic structures of the nanocarbons affect and improve the in situ polymerized polyaniline composites and their subsequent actuator behavior. The nanocarbons investigated were multiwalled carbon nanotubes, nitrogen-doped carbon nanotubes, helical-ribbon carbon nanofibers and graphene oxide, each one presenting different shape and structural characteristics. Films of nanocarbon-PAni composite were tested in a liquid electrolyte cell system. Experimental design was used to select the type of nanocarbon filler and composite loadings, and yielded a good balance of electromechanical properties. Raman spectroscopy suggests good interaction between PAni and the nanocarbon fillers. Electron microscopy showed that graphene oxide dispersed the best, followed by multiwall carbon nanotubes, while nitrogen-doped nanotube composites showed dispersion problems and thus poor performance. Multiwall carbon nanotube composite actuators showed the best performance based on the combination of bending angle, bending velocity and maximum working cycles, while graphene oxide attained similarly good performance due to its best dispersion. This parallel testing of a broad set of nanocarbon fillers on PAni-composite actuators is unprecedented to the best of our knowledge and shows that the type and properties of the carbon nanomaterial are critical to the performance of electromechanical devices with other conditions remaining equal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

N-doped activated carbon fibers have been synthesized by using chemically polymerized aniline as source of nitrogen. Commercial activated carbon fibers (A20) were chemically modified with a thin film of polyaniline (PANI) inside the microporosity of the carbon fibers. The modified activated carbon fibers were carbonized at 600 and 800 °C, respectively. In this way, activated carbon fibers modified with surface nitrogen species were prepared in order to analyze their influence in the performance of electrochemical capacitors in organic electrolyte. Symmetric capacitors were made of activated carbon fibers and N-doped activated carbon fibers and tested in a two-electrode cell configuration, using triethylmethylammonium tetrafluoroborate/propylene carbonate (TEMA-BF4/PC) as electrolyte. The effect of nitrogen species in the degradation or stabilization of the capacitor has been analyzed through floating durability tests using a high voltage charging (3.2 V). The results show higher stabilizing effect in carbonized samples (N-ACF) than in non-carbonized samples and pristine activated carbon fibers, which is attributed to the presence of aromatic nitrogen group, especially positively charged N-functional groups.