6 resultados para nanoparticle tracking analysis
em Universidad de Alicante
Resumo:
Comunicación presentada en el VII Symposium Nacional de Reconocimiento de Formas y Análisis de Imágenes, SNRFAI, Barcelona, abril 1997.
Resumo:
Deformable Template models are first applied to track the inner wall of coronary arteries in intravascular ultrasound sequences, mainly in the assistance to angioplasty surgery. A circular template is used for initializing an elliptical deformable model to track wall deformation when inflating a balloon placed at the tip of the catheter. We define a new energy function for driving the behavior of the template and we test its robustness both in real and synthetic images. Finally we introduce a framework for learning and recognizing spatio-temporal geometric constraints based on Principal Component Analysis (eigenconstraints).
Resumo:
Póster presentado en OPTYKA Optical Fair 2012, Poznan, Polonia, 9-10 noviembre 2012.
Resumo:
Subpixel techniques are commonly used to increase the spatial resolution in tracking tasks. Object tracking with targets of known shape permits obtaining information about object position and orientation in the three-dimensional space. A proper selection of the target shape allows us to determine its position inside a plane and its angular and azimuthal orientation under certain limits. Our proposal is demonstrated both numerical and experimentally and provides an increase the accuracy of more than one order of magnitude compared to the nominal resolution of the sensor. The experiment has been performed with a high-speed camera, which simultaneously provides high spatial and temporal resolution, so it may be interesting for some applications where this kind of targets can be attached, such as vibration monitoring and structural analysis.
Resumo:
We present a targetless motion tracking method for detecting planar movements with subpixel accuracy. This method is based on the computation and tracking of the intersection of two nonparallel straight-line segments in the image of a moving object in a scene. The method is simple and easy to implement because no complex structures have to be detected. It has been tested and validated using a lab experiment consisting of a vibrating object that was recorded with a high-speed camera working at 1000 fps. We managed to track displacements with an accuracy of hundredths of pixel or even of thousandths of pixel in the case of tracking harmonic vibrations. The method is widely applicable because it can be used for distance measuring amplitude and frequency of vibrations with a vision system.
Resumo:
Automatic video segmentation plays a vital role in sports videos annotation. This paper presents a fully automatic and computationally efficient algorithm for analysis of sports videos. Various methods of automatic shot boundary detection have been proposed to perform automatic video segmentation. These investigations mainly concentrate on detecting fades and dissolves for fast processing of the entire video scene without providing any additional feedback on object relativity within the shots. The goal of the proposed method is to identify regions that perform certain activities in a scene. The model uses some low-level feature video processing algorithms to extract the shot boundaries from a video scene and to identify dominant colours within these boundaries. An object classification method is used for clustering the seed distributions of the dominant colours to homogeneous regions. Using a simple tracking method a classification of these regions to active or static is performed. The efficiency of the proposed framework is demonstrated over a standard video benchmark with numerous types of sport events and the experimental results show that our algorithm can be used with high accuracy for automatic annotation of active regions for sport videos.