2 resultados para multiple reaction model
em Universidad de Alicante
Resumo:
On the basis of laboratory experiments with model mixtures (active carbon + CuBr2 at different loads), this work studies the formation of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) by de novo synthesis. For the different samples, the temperature of the maximum carbon oxidation rate was determined by thermogravimetric analysis, and a kinetic model was proposed for the degradation of the materials in an oxidizing atmosphere (synthetic air). The effect of the addition of different amounts of CuBr2 was studied, finding that its presence accelerates the degradation of the carbonaceous structure in the presence of oxygen. The thermal degradation of the samples in air is satisfactorily described by a first-order single-reaction model. In addition, combustion runs of one of the mixtures (consisting of activated carbon + 50 wt % CuBr2, pyrolyzed at 700 °C) were performed in a quartz horizontal laboratory furnace. The analysis of the emissions and the solid residue proved the formation of brominated dioxins and furans at 300, 400, and 500 °C, with a maximum yield at 300 °C (91.7 ng/g of total PBDD/Fs) and a higher bromination degree with increasing temperature.
Resumo:
The adsorption of As(III) from aqueous solutions using naturally occurring and modified Algerian montmorillonites has been investigated as a function of contact time, pH, and temperature. Kinetic studies reveal that uptake of As(III) ions is rapid within the first 3 h, and it slows down thereafter. Equilibrium studies show that As(III) shows the highest affinity toward acidic montmorillonite even at very low concentration of arsenic. The kinetics of As(III) adsorption on all montmorillonites used is well described by a pseudo-second-order chemical reaction model, which indicates that the adsorption process of these species is likely to be chemisorption. Adsorption isotherms of As(III) fitted the Langmuir and Freundlich isotherm models well. The adsorption of As(III) is pH-dependent obtaining an optimal adsorption at pH 5. From the thermodynamic parameters, it is concluded that the process is exothermic, spontaneous, and favorable. The results suggest that M1, M2, and acidic-M2 could be used as low-cost and effective filtering materials for removal of arsenic from water.