3 resultados para multi-linear representations

em Universidad de Alicante


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The theory and methods of linear algebra are a useful alternative to those of convex geometry in the framework of Voronoi cells and diagrams, which constitute basic tools of computational geometry. As shown by Voigt and Weis in 2010, the Voronoi cells of a given set of sites T, which provide a tesselation of the space called Voronoi diagram when T is finite, are solution sets of linear inequality systems indexed by T. This paper exploits systematically this fact in order to obtain geometrical information on Voronoi cells from sets associated with T (convex and conical hulls, tangent cones and the characteristic cones of their linear representations). The particular cases of T being a curve, a closed convex set and a discrete set are analyzed in detail. We also include conclusions on Voronoi diagrams of arbitrary sets.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we examine multi-objective linear programming problems in the face of data uncertainty both in the objective function and the constraints. First, we derive a formula for the radius of robust feasibility guaranteeing constraint feasibility for all possible scenarios within a specified uncertainty set under affine data parametrization. We then present numerically tractable optimality conditions for minmax robust weakly efficient solutions, i.e., the weakly efficient solutions of the robust counterpart. We also consider highly robust weakly efficient solutions, i.e., robust feasible solutions which are weakly efficient for any possible instance of the objective matrix within a specified uncertainty set, providing lower bounds for the radius of highly robust efficiency guaranteeing the existence of this type of solutions under affine and rank-1 objective data uncertainty. Finally, we provide numerically tractable optimality conditions for highly robust weakly efficient solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we analyze the effect of demand uncertainty on the multi-objective optimization of chemical supply chains (SC) considering simultaneously their economic and environmental performance. To this end, we present a stochastic multi-scenario mixed-integer linear program (MILP) with the unique feature of incorporating explicitly the demand uncertainty using scenarios with given probability of occurrence. The environmental performance is quantified following life cycle assessment (LCA) principles, which are represented in the model formulation through standard algebraic equations. The capabilities of our approach are illustrated through a case study. We show that the stochastic solution improves the economic performance of the SC in comparison with the deterministic one at any level of the environmental impact.