3 resultados para molecular marker-assisted selection
em Universidad de Alicante
Resumo:
Visual symptoms are relatively common in Parkinson's disease (PD) and optical coherence tomography has indicated possible retinal thinning. Accumulation of aggregated α-synuclein is thought to be a central pathogenic event in the PD brain but there have not as yet been reports of retinal synucleinopathy. Retinal wholemounts were prepared from subjects with a primary clinicopathological diagnosis of PD (N = 9), dementia with Lewy bodies (DLB; N = 3), Alzheimer's disease (N = 3), progressive supranuclear palsy (N = 2) as well as elderly normal control subjects (N = 4). These were immunohistochemically stained with an antibody against α-synuclein phosphorylated at serine 129, which is a specific molecular marker of synucleinopathy. Phosphorylated α-synuclein-immunoreactive (p-syn IR) nerve fibers were present in 7/9 PD subjects and in 1/3 DLB subjects; these were sparsely distributed and superficially located near or at the inner retinal surface. The fibers were either long and straight or branching, often with multiple en-passant varicosities along their length. The straight fibers most often had an orientation that was radial with respect to the optic disk. Together, these features are suggestive of either retinopetal/centrifugal fibers or of ganglion cell axons. In one PD subject there were sparse p-syn IR neuronal cell bodies with dendritic morphology suggestive of G19 retinal ganglion cells or intrinsically photosensitive ganglion cells. There were no stained nerve fibers or other specific staining in any of the non-PD or non-DLB subjects. It is possible that at least some of the observed visual function impairments in PD subjects might be due to α-synucleinopathy.
Microwave-assisted catalysis by iron oxide nanoparticles on MCM-41: Effect of the support morphology
Resumo:
Catalytically active heterogeneous catalysts have been prepared via microwave deposition of iron oxide nanoparticles (0.5–1.2 wt%) on MCM-41 type silica materials with different morphologies (particles, helical and spheres). This methodology leads to iron oxide nanoparticles composed by a mixture of FeO and Fe2O3 species, being the Fe(II)/Fe(III) peak ratio near to 1.11 by XPS. DRUV spectroscopy indicates the presence of tetrahedral coordinated Fe3+ in the silica framework of the three catalysts as well as some extraframework iron species in the catalysts with particle and sphere-like morphologies. The loading of the nanoparticles does neither affect the mesopore arrangement nor the textural properties of the silica supports, as indicated by SAXS and nitrogen adsorption/desorption isotherms. A detailed investigation of the morphology of the supports in various microwave-assisted catalyzed processes shows that helical mesostructures provide optimum catalytic activities and improved reusabilities in the microwave-assisted redox (selective oxidation of benzyl alcohol) catalyzed process probably due to a combination of lower particle size and higher acidity in comparison with the supports with particle and sphere morphology.
Resumo:
The production of virulence factors by many pathogenic microorganisms depends on the intercellular communication system called quorum sensing, which involves the production and release of signal molecules known as autoinducers. Based on this, new-therapeutic strategies have emerged for the treatment of a variety of infections, such as the enzymatic degradation of signaling molecules, known as quorum quenching (QQ). In this study, we present the screening of QQ activity amongst 450 strains isolated from a bivalve hatchery in Granada (Spain), and the selection of the strain PQQ-42, which degrades a wide range of N-acylhomoserine lactones (AHLs). The selected strain, identified as Alteromonas stellipolaris, degraded the accumulation of AHLs and reduced the production of protease and chitinase and swimming motility of a Vibrio species in co-cultivation experiments in vitro. In the bio-control experiment, strain PQQ-42 significantly reduced the pathogenicity of Vibrio mediterranei VibC-Oc-097 upon the coral Oculina patagonica showing a lower degree of tissue damage (29.25 ± 14.63%) in its presence, compared to when the coral was infected with V. mediterranei VibC-Oc-097 alone (77.53 ± 13.22%). Our results suggest that this AHL-degrading bacterium may have biotechnological applications in aquaculture.