4 resultados para mathematical programming
em Universidad de Alicante
Resumo:
Mathematical programming can be used for the optimal design of shell-and-tube heat exchangers (STHEs). This paper proposes a mixed integer non-linear programming (MINLP) model for the design of STHEs, following rigorously the standards of the Tubular Exchanger Manufacturers Association (TEMA). Bell–Delaware Method is used for the shell-side calculations. This approach produces a large and non-convex model that cannot be solved to global optimality with the current state of the art solvers. Notwithstanding, it is proposed to perform a sequential optimization approach of partial objective targets through the division of the problem into sets of related equations that are easier to solve. For each one of these problems a heuristic objective function is selected based on the physical behavior of the problem. The global optimal solution of the original problem cannot be ensured even in the case in which each of the sub-problems is solved to global optimality, but at least a very good solution is always guaranteed. Three cases extracted from the literature were studied. The results showed that in all cases the values obtained using the proposed MINLP model containing multiple objective functions improved the values presented in the literature.
Resumo:
In this paper, we propose a duality theory for semi-infinite linear programming problems under uncertainty in the constraint functions, the objective function, or both, within the framework of robust optimization. We present robust duality by establishing strong duality between the robust counterpart of an uncertain semi-infinite linear program and the optimistic counterpart of its uncertain Lagrangian dual. We show that robust duality holds whenever a robust moment cone is closed and convex. We then establish that the closed-convex robust moment cone condition in the case of constraint-wise uncertainty is in fact necessary and sufficient for robust duality. In other words, the robust moment cone is closed and convex if and only if robust duality holds for every linear objective function of the program. In the case of uncertain problems with affinely parameterized data uncertainty, we establish that robust duality is easily satisfied under a Slater type constraint qualification. Consequently, we derive robust forms of the Farkas lemma for systems of uncertain semi-infinite linear inequalities.
Resumo:
This paper presents a new mathematical programming model for the retrofit of heat exchanger networks (HENs), wherein the pressure recovery of process streams is conducted to enhance heat integration. Particularly applied to cryogenic processes, HENs retrofit with combined heat and work integration is mainly aimed at reducing the use of expensive cold services. The proposed multi-stage superstructure allows the increment of the existing heat transfer area, as well as the use of new equipment for both heat exchange and pressure manipulation. The pressure recovery of streams is carried out simultaneously with the HEN design, such that the process conditions (streams pressure and temperature) are variables of optimization. The mathematical model is formulated using generalized disjunctive programming (GDP) and is optimized via mixed-integer nonlinear programming (MINLP), through the minimization of the retrofit total annualized cost, considering the turbine and compressor coupling with a helper motor. Three case studies are performed to assess the accuracy of the developed approach, including a real industrial example related to liquefied natural gas (LNG) production. The results show that the pressure recovery of streams is efficient for energy savings and, consequently, for decreasing the HEN retrofit total cost especially in sub-ambient processes.
Resumo:
The aim of this note is to formulate an envelope theorem for vector convex programs. This version corrects an earlier work, “The envelope theorem for multiobjective convex programming via contingent derivatives” by Jiménez Guerra et al. (2010) [3]. We first propose a necessary and sufficient condition allowing to restate the main result proved in the alluded paper. Second, we introduce a new Lagrange multiplier in order to obtain an envelope theorem avoiding the aforementioned error.