9 resultados para massive QED
em Universidad de Alicante
Resumo:
Discoveries during the last two years have revealed the existence of a vast region of star formation close to the base of the Scutum Arm, where at least five clusters of red supergiants have been found. In order to understand the nature of this region, we need to determine accurate distances to the clusters. We present here the first results of an ongoing program to derive fundamental parameters (such as age, distance, etc.) to the massive cluster Stephenson 2 studying for the first time its main sequence stars.
Resumo:
Context. Four clusters of red supergiants have been discovered in a region of the Milky Way close to base of the Scutum-Crux Arm and the tip of the Long Bar. Population synthesis models indicate that they must be very massive to harbour so many supergiants. If the clusters are physically connected, this Scutum Complex would be the largest and most massive star-forming region ever identified in the Milky Way. Aims. The spatial extent of one of these clusters, RSGC3, has not been investigated. In this paper we explore the possibility that a population of red supergiants could be located in its vicinity. Methods. We utilised 2MASS JHKS photometry to identify candidate obscured luminous red stars in the vicinity of RSGC3. We observed a sample of candidates with the TWIN spectrograph on the 3.5-m telescope at Calar Alto, obtaining intermediate-resolution spectroscopy in the 8000−9000 Å range. We re-evaluated a number of classification criteria proposed in the literature for this spectral range and found that we could use our spectra to derive spectral types and luminosity classes. Results. We measured the radial velocity of five members of RSGC3, finding velocities similar to the average for members of Stephenson 2. Among the candidates observed outside the cluster, our spectra revealed eight M-type supergiants at distances <18′ from the centre of RSGC3, distributed in two clumps. The southern clump is most likely another cluster of red supergiants, with reddening and age identical to RSGC3. From 2MASS photometry, we identified four likely supergiant members of the cluster in addition to the five spectroscopically observed. The northern clump may be a small cluster with similar parameters. Photometric analysis of the area around RSGC3 suggests the presence of a large (>30) population of red supergiants with similar colours. Conclusions. Our data suggest that the massive cluster RSGC3 is surrounded by an extended association, which may be very massive ( ≳ 105 M⊙). We also show that supergiants in the Scutum Complex may be characterised via a combination of 2MASS photometry and intermediate-to-high-resolution spectroscopy in the Z band.
Resumo:
Context. There is growing evidence that a treatment of binarity amongst OB stars is essential for a full theory of stellar evolution. However the binary properties of massive stars – frequency, mass ratio & orbital separation – are still poorly constrained. Aims. In order to address this shortcoming we have undertaken a multiepoch spectroscopic study of the stellar population of the young massive cluster Westerlund 1. In this paper we present an investigation into the nature of the dusty Wolf-Rayet star and candidate binary W239. Methods. To accomplish this we have utilised our spectroscopic data in conjunction with multi-year optical and near-IR photometric observations in order to search for binary signatures. Comparison of these data to synthetic non-LTE model atmosphere spectra were used to derive the fundamental properties of the WC9 primary. Results. We found W239 to have an orbital period of only ~5.05 days, making it one of the most compact WC binaries yet identified. Analysis of the long term near-IR lightcurve reveals a significant flare between 2004-6. We interpret this as evidence for a third massive stellar component in the system in a long period (>6 yr), eccentric orbit, with dust production occuring at periastron leading to the flare. The presence of a near-IR excess characteristic of hot (~1300 K) dust at every epoch is consistent with the expectation that the subset of persistent dust forming WC stars are short (<1 yr) period binaries, although confirmation will require further observations. Non-LTE model atmosphere analysis of the spectrum reveals the physical properties of the WC9 component to be fully consistent with other Galactic examples. Conclusions. The simultaneous presence of both short period Wolf-Rayet binaries and cool hypergiants within Wd 1 provides compelling evidence for a bifurcation in the post-Main Sequence evolution of massive stars due to binarity. Short period O+OB binaries will evolve directly to the Wolf-Rayet phase, either due to an episode of binary mediated mass loss – likely via case A mass transfer or a contact configuration – or via chemically homogenous evolution. Conversely, long period binaries and single stars will instead undergo a red loop across the HR diagram via a cool hypergiant phase. Future analysis of the full spectroscopic dataset for Wd 1 will constrain the proportion of massive stars experiencing each pathway; hence quantifying the importance of binarity in massive stellar evolution up to and beyond supernova and the resultant production of relativistic remnants.
Resumo:
Context. Recent studies have shown that the area around the massive, obscured cluster RSGC3 may harbour several clusters of red supergiants. Aims. We analyse a clump of photometrically selected red supergiant candidates 20′ south of RSGC3 in order to confirm the existence of another of these clusters. Methods. Using medium-resolution infrared spectroscopy around 2.27 μm, we derived spectral types and velocities along the line of sight for the selected candidates, confirming their nature and possible association. Results. We find a compact clump of eight red supergiants and four other candidates at some distance, all of them spectroscopically confirmed red supergiants. The majority of these objects must form an open cluster, which we name Alicante 10. Because of the high reddening and strong field contamination, the cluster sequence is not clearly seen in 2MASS or GPS-UKIDSS. From the observed sources, we derive E(J − KS) = 2.6 and d ≈ 6 kpc. Conclusions. Although the cluster is smaller than RSGC3, it has an initial mass in excess of 10 000 M⊙, and it seems to be part of the RSGC3 complex. With the new members this association already has 35 spectroscopically confirmed red supergiants, confirming its place as one of the most active sites of recent stellar formation in the Galaxy.
Resumo:
Context. Young massive clusters are key to map the Milky Way’s structure, and near-infrared large area sky surveys have contributed strongly to the discovery of new obscured massive stellar clusters. Aims. We present the third article in a series of papers focused on young and massive clusters discovered in the VVV survey. This article is dedicated to the physical characterization of VVV CL086, using part of its OB-stellar population. Methods. We physically characterized the cluster using JHKS near-infrared photometry from ESO public survey VVV images, using the VVV-SkZ pipeline, and near-infrared K-band spectroscopy, following the methodology presented in the first article of the series. Results. Individual distances for two observed stars indicate that the cluster is located at the far edge of the Galactic bar. These stars, which are probable cluster members from the statistically field-star decontaminated CMD, have spectral types between O9 and B0 V. According to our analysis, this young cluster (1.0 Myr < age < 5.0 Myr) is located at a distance of 11+5-6 kpc, and we estimate a lower limit for the cluster total mass of (2.8+1.6-1.4) · 103 M⊙. It is likely that the cluster contains even earlier and more massive stars.
Resumo:
Context. The early-type binary MY Cam belongs to the young open cluster Alicante 1, embedded in Cam OB3. Aims. MY Cam consists of two early-O type main-sequence stars and shows a photometric modulation suggesting an orbital period slightly above one day. We intend to confirm this orbital period and derive orbital and stellar parameters. Methods. Timing analysis of a very exhaustive (4607 points) light curve indicates a period of 1.1754514 ± 0.0000015 d. High-resolution spectra and the cross-correlation technique implemented in the todcor program were used to derive radial velocities and obtain the corresponding radial velocity curves for MY Cam. Modelling with the stellar atmosphere code fastwind was used to obtain stellar parameters and create templates for cross-correlation. Stellar and orbital parameters were derived using the Wilson-Devinney code, such that a complete solution to the binary system could be described. Results. The determined masses of the primary and secondary stars in MY Cam are 37.7 ± 1.6 and 31.6 ± 1.4M⊙, respectively. The corresponding temperatures, derived from the model atmosphere fit, are 42 000 and 39 000 K, with the more massive component being hotter. Both stars are overfilling their Roche lobes, sharing a common envelope. Conclusions. MY Cam contains the most massive dwarf O-type stars found so far in an eclipsing binary. Both components are still on the main sequence, and probably not far from the zero-age main sequence. The system is a likely merger progenitor, owing to its very short period.
Resumo:
Context. It appears that most (if not all) massive stars are born in multiple systems. At the same time, the most massive binaries are hard to find owing to their low numbers throughout the Galaxy and the implied large distances and extinctions. Aims. We want to study LS III +46 11, identified in this paper as a very massive binary; another nearby massive system, LS III +46 12; and the surrounding stellar cluster, Berkeley 90. Methods. Most of the data used in this paper are multi-epoch high S/N optical spectra, although we also use Lucky Imaging and archival photometry. The spectra are reduced with dedicated pipelines and processed with our own software, such as a spectroscopic-orbit code, CHORIZOS, and MGB. Results. LS III +46 11 is identified as a new very early O-type spectroscopic binary [O3.5 If* + O3.5 If*] and LS III +46 12 as another early O-type system [O4.5 V((f))]. We measure a 97.2-day period for LS III +46 11 and derive minimum masses of 38.80 ± 0.83 M⊙ and 35.60 ± 0.77 M⊙ for its two stars. We measure the extinction to both stars, estimate the distance, search for optical companions, and study the surrounding cluster. In doing so, a variable extinction is found as well as discrepant results for the distance. We discuss possible explanations and suggest that LS III +46 12 may be a hidden binary system where the companion is currently undetected.
Resumo:
Context. The first soft gamma-ray repeater was discovered over three decades ago, and was subsequently identified as a magnetar, a class of highly magnetised neutron star. It has been hypothesised that these stars power some of the brightest supernovae known, and that they may form the central engines of some long duration gamma-ray bursts. However there is currently no consenus on the formation channel(s) of these objects. Aims. The presence of a magnetar in the starburst cluster Westerlund 1 implies a progenitor with a mass ≥40 M⊙, which favours its formation in a binary that was disrupted at supernova. To test this hypothesis we conducted a search for the putative pre-SN companion. Methods. This was accomplished via a radial velocity survey to identify high-velocity runaways, with subsequent non-LTE model atmosphere analysis of the resultant candidate, Wd1-5. Results. Wd1-5 closely resembles the primaries in the short-period binaries, Wd1-13 and 44, suggesting a similar evolutionary history, although it currently appears single. It is overluminous for its spectroscopic mass and we find evidence of He- and N-enrichement, O-depletion, and critically C-enrichment, a combination of properties that is difficult to explain under single star evolutionary paradigms. We infer a pre-SN history for Wd1-5 which supposes an initial close binary comprising two stars of comparable (~ 41 M⊙ + 35 M⊙) masses. Efficient mass transfer from the initially more massive component leads to the mass-gainer evolving more rapidly, initiating luminous blue variable/common envelope evolution. Reverse, wind-driven mass transfer during its subsequent WC Wolf-Rayet phase leads to the carbon pollution of Wd1-5, before a type Ibc supernova disrupts the binary system. Under the assumption of a physical association between Wd1-5 and J1647-45, the secondary is identified as the magnetar progenitor; its common envelope evolutionary phase prevents spin-down of its core prior to SN and the seed magnetic field for the magnetar forms either in this phase or during the earlier episode of mass transfer in which it was spun-up. Conclusions. Our results suggest that binarity is a key ingredient in the formation of at least a subset of magnetars by preventing spin-down via core-coupling and potentially generating a seed magnetic field. The apparent formation of a magnetar in a Type Ibc supernova is consistent with recent suggestions that superluminous Type Ibc supernovae are powered by the rapid spin-down of these objects.
Resumo:
We present an analysis of a 78 ks Chandra high-energy transmission gratings observation of the B0I star QV Nor, the massive donor of the wind-accreting pulsar 4U1538−52. The neutron star (NS) orbits its companion in a very close orbit (r < 1.4R*, in units of the stellar radii), thereby allowing probing of the innermost wind regions. The flux of the Fe Kα line during eclipse reduces to only ∼30% of the flux measured out of eclipse. This indicates that the majority of Fe fluorescence must be produced in regions close to the NS, at distances smaller than 1R* from its surface. The fact that the flux of the continuum decreases to only ∼3% during eclipse allows for a high contrast of the Fe Kα line fluorescence during eclipse. The line is not resolved and centered at 1.9368 0.0018 l = 0.0032 - + Å. From the inferred plasma speed limit of v < c l < 800 l D km s−1 and range of ionization parameters of log 1, 2 x = [- ], together with the stellar density profile, we constrain the location of the cold, dense material in the stellar wind of QV Nor using simple geometrical considerations. We then use the Fe Kα line fluorescence as a tracer of wind clumps and determine that these clumps in the stellar wind of QV Nor (B0I) must already be present at radii r < 1.25R*, close to the photosphere of the star.