6 resultados para mass spectral fingerprinting

em Universidad de Alicante


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Results of a systematic study concerning non-spectral interferences from sulfuric acid containing matrices on a large number of elements in inductively coupled plasma–mass spectrometry (ICP-MS) are presented in this work. The signals obtained with sulfuric acid solutions of different concentrations (up to 5% w w− 1) have been compared with the corresponding signals for a 1% w w− 1− nitric acid solution at different experimental conditions (i.e., sample uptake rates, nebulizer gas flows and r.f. powers). The signals observed for 128Te+, 78Se+ and 75As+ were significantly higher when using sulfuric acid matrices (up to 2.2-fold for 128Te+ and 78Se+ and 1.8-fold for 75As+ in the presence of 5 w w-1 sulfuric acid) for the whole range of experimental conditions tested. This is in agreement with previously reported observations. The signal for 31P+ is also higher (1.1-fold) in the presence of sulfuric acid. The signal enhancements for 128Te+, 78Se+, 75As+ and 31P+ are explained in relation to an increase in the analyte ion population as a result of charge transfer reactions involving S+ species in the plasma. Theoretical data suggest that Os, Sb, Pt, Ir, Zn and Hg could also be involved in sulfur-based charge transfer reactions, but no experimental evidence has been found. The presence of sulfuric acid gives rise to lower ion signals (about 10–20% lower) for the other nuclides tested, thus indicating the negative matrix effect caused by changes in the amount of analyte loading of the plasma. The elemental composition of a certified low-density polyethylene sample (ERM-EC681K) was determined by ICP-MS after two different sample digestion procedures, one of them including sulfuric acid. Element concentrations were in agreement with the certified values, irrespective of the acids used for the digestion. These results demonstrate that the use of matrix-matched standards allows the accurate determination of the tested elements in a sulfuric acid matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims. We report near-infrared observations of the supergiant donor to the eclipsing high mass X-ray binary pulsar IGR J18027-2016. We aim to determine its spectral type and measure its radial velocity curve and hence determine the stellar masses of the components. Methods. ESO/VLT observations of the donor utilising the NIR spectrograph ISAAC were obtained in the H and K bands. The multi-epoch H band spectra were cross-correlated with RV templates in order to determine a radial solution for the system. Results. The spectral type of the donor was confirmed as B0-1 I. The radial velocity curve constructed has a semi-amplitude of 23.8 ± 3.1 km s-1. Combined with other measured system parameters, a dynamically determined neutron star mass of 1.4  ±  0.2–1.6  ±  0.3 M⊙ is found. The mass range of the B0-B1 I donor was 18.6  ±  0.8–21.8  ±  2.4 M⊙. These lower and upper limits were obtained under the assumption that the system is viewed edge-on (i = 90° with β = 0.89) for the lower limit and the donor fills its Roche lobe (β = 1 with i = 73.1°) for the upper limit respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work explores the multi-element capabilities of inductively coupled plasma - mass spectrometry with collision/reaction cell technology (CCT-ICP-MS) for the simultaneous determination of both spectrally interfered and non-interfered nuclides in wine samples using a single set of experimental conditions. The influence of the cell gas type (i.e. He, He+H2 and He+NH3), cell gas flow rate and sample pre-treatment (i.e. water dilution or acid digestion) on the background-equivalent concentration (BEC) of several nuclides covering the mass range from 7 to 238 u has been studied. Results obtained in this work show that, operating the collision/reaction cell with a compromise cell gas flow rate (i.e. 4 mL min−1) improves BEC values for interfered nuclides without a significant effect on the BECs for non-interfered nuclides, with the exception of the light elements Li and Be. Among the different cell gas mixtures tested, the use of He or He+H2 is preferred over He+NH3 because NH3 generates new spectral interferences. No significant influence of the sample pre-treatment methodology (i.e. dilution or digestion) on the multi-element capabilities of CCT-ICP-MS in the context of simultaneous analysis of interfered and non-interfered nuclides was observed. Nonetheless, sample dilution should be kept at minimum to ensure that light nuclides (e.g. Li and Be) could be quantified in wine. Finally, a direct 5-fold aqueous dilution is recommended for the simultaneous trace and ultra-trace determination of spectrally interfered and non-interfered elements in wine by means of CCT-ICP-MS. The use of the CCT is mandatory for interference-free ultra-trace determination of Ti and Cr. Only Be could not be determined when using the CCT due to a deteriorated limit of detection when compared to conventional ICP-MS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a comprehensive analysis of the whole sample of available XMM-Newton observations of high-mass X-ray binaries (HMXBs) until August 2013, focusing on the FeKα emission line. This line is key to better understanding the physical properties of the material surrounding the X-ray source within a few stellar radii (the circumstellar medium). We collected observations from 46 HMXBs and detected FeKα in 21 of them. We used the standard classification of HMXBs to divide the sample into different groups. We find that (1) different classes of HMXBs display different qualitative behaviours in the FeKα spectral region. This is visible especially in SGXBs (showing ubiquitous Fe fluorescence but not recombination Fe lines) and in γ Cass analogues (showing both fluorescent and recombination Fe lines). (2) FeKα is centred at a mean value of 6.42 keV. Considering the instrumental and fits uncertainties, this value is compatible with ionization states that are lower than Fe xviii. (3) The flux of the continuum is well correlated with the flux of the line, as expected. Eclipse observations show that the Fe fluorescence emission comes from an extended region surrounding the X-ray source. (4) We observe an inverse correlation between the X-ray luminosity and the equivalent width of FeKα (EW). This phenomenon is known as the X-ray Baldwin effect. (5) FeKα is narrow (σline< 0.15 keV), reflecting that the reprocessing material does not move at high speeds. We attempt to explain the broadness of the line in terms of three possible broadening phenomena: line blending, Compton scattering, and Doppler shifts (with velocities of the reprocessing material V ~ 1000 km s-1). (6) The equivalent hydrogen column (NH) directly correlates to the EW of FeKα, displaying clear similarities to numerical simulations. It highlights the strong link between the absorbing and the fluorescent matter. (7) The observed NH in supergiant X-ray binaries (SGXBs) is in general higher than in supergiant fast X-ray transients (SFXTs). We suggest two possible explanations: different orbital configurations or a different interaction compact object – wind. (8) Finally, we analysed the sources IGR J16320-4751 and 4U 1700-37 in more detail, covering several orbital phases. The observed variation in NH between phases is compatible with the absorption produced by the wind of their optical companions. The results clearly point to a very important contribution of the donor’s wind in the FeKα emission and the absorption when the donor is a supergiant massive star.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. The eclipsing binary GU Mon is located in the star-forming cluster Dolidze 25, which has the lowest metallicity measured in a Milky Way young cluster. Aims. GU Mon has been identified as a short-period eclipsing binary with two early B-type components. We set out to derive its orbital and stellar parameters. Methods. We present a comprehensive analysis, including B and V light curves and 11 high-resolution spectra, to verify the orbital period and determine parameters. We used the stellar atmosphere code FASTWIND to obtain stellar parameters and create templates for cross-correlation. We obtained a model to fit the light and radial-velocity curves using the Wilson-Devinney code iteratively and simultaneously. Results. The two components of GU Mon are identical stars of spectral type B1 V with the same mass and temperature. The light curves are typical of an EW-type binary. The spectroscopic and photometric analyses agree on a period of 0.896640 ± 0.000007 d. We determine a mass of 9.0 ± 0.6 M⊙ for each component and for temperatures of 28 000 ± 2000 K. Both values are consistent with the spectral type. The two stars are overfilling their respective Roche lobes, sharing a common envelope and, therefore the orbit is synchronised and circularised. Conclusions. The GU Mon system has a fill-out factor above 0.8, containing two dwarf B-type stars on the main sequence. The two stars are in a very advanced stage of interaction, with their extreme physical similarity likely due to the common envelope. The expected evolution of such a system very probably leads to a merger while still on the main sequence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. Since its launch, the X-ray and γ-ray observatory INTEGRAL satellite has revealed a new class of high-mass X-ray binaries (HMXB) displaying fast flares and hosting supergiant companion stars. Optical and infrared (OIR) observations in a multi-wavelength context are essential to understand the nature and evolution of these newly discovered celestial objects. Aims. The goal of this multiwavelength study (from ultraviolet to infrared) is to characterise the properties of IGR J16465−4507, to confirm its HMXB nature and that it hosts a supergiant star. Methods. We analysed all OIR, photometric and spectroscopic observations taken on this source, carried out at ESO facilities. Results. Using spectroscopic data, we constrained the spectral type of the companion star between B0.5 and B1 Ib, settling the debate on the true nature of this source. We measured a high rotation velocity of v = 320 ± 8km s-1 from fitting absorption and emission lines in a stellar spectral model. We then built a spectral energy distribution from photometric observations to evaluate the origin of the different components radiating at each energy range. Conclusions. We finally show that, having accurately determined the spectral type of the early-B supergiant in IGR J16465−4507, we firmly support its classification as an intermediate supergiant fast X-ray transient (SFXT).