4 resultados para magnetic materials

em Universidad de Alicante


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ab initio quantum transport calculations show that short NiO chains suspended in Ni nanocontacts present a very strong spin-polarization of the conductance.The generalized gradient approximation we use here predicts a similar polarization of the conductance as the one previously computed with non-local exchange, confirming the robustness of the result. Their use as nanoscopic spinvalves is proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Skyrmions are topologically protected spin textures, characterized by a topological winding number N, that occur spontaneously in some magnetic materials. Recent experiments have demonstrated the capability to grow graphene on top Fe/Ir, a system that exhibits a two-dimensional skyrmion lattice. Here we show that a weak exchange coupling between the Dirac electrons in graphene and a two-dimensional skyrmion lattice withN = ±1 drives graphene into a quantum anomalous Hall phase, with a band gap in bulk, a Chern number C = 2N, and chiral edge states with perfect quantization of conductance G = 2N e2 h . Our findings imply that the topological properties of the skyrmion lattice can be imprinted in the Dirac electrons of graphene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Both spin and orbital degrees of freedom contribute to the magnetic moment of isolated atoms. However, when inserted in crystals, atomic orbital moments are quenched because of the lack of rotational symmetry that protects them when isolated. Thus, the dominant contribution to the magnetization of magnetic materials comes from electronic spin. Here we show that nanoislands of quantum spin Hall insulators can host robust orbital edge magnetism whenever their highest occupied Kramers doublet is singly occupied, upgrading the spin edge current into a charge current. The resulting orbital magnetization scales linearly with size, outweighing the spin contribution for islands of a few nm in size. This linear scaling is specific of the Dirac edge states and very different from Schrodinger electrons in quantum rings. By modeling Bi(111) flakes, whose edge states have been recently observed, we show that orbital magnetization is robust with respect to disorder, thermal agitation, shape of the island, and crystallographic direction of the edges, reflecting its topological protection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two magnetically separable Fe3O4/SiO2 (aerogel and MSU-X) composites with very low Fe3O4 content (<1 wt%) have been successfully prepared at room temperature by co-condensation of MPTES-functionalized Fe3O4 nanoparticles (NPs) with a silicon alkoxide. This procedure yields a homogeneous incorporation of the Fe3O4 NPs on silica supports, leading to magnetic composites that can be easily recovered using an external magnetic field, despite their very low Fe3O4 NPs content (ca. 1 wt%). These novel hybrid Fe3O4/SiO2 materials have been tested for the oxidation reaction of 3,3′,5,5′-tetramethylbenzidine (TMB) with hydrogen peroxide showing an enhancement of the stability of the NPs in the Fe3O4/silica aerogel as compared to the Fe3O4 NPs alone, even after five catalytic cycles, no leaching or agglomeration of the Fe3O4/SiO2 systems.