3 resultados para magnetic interaction

em Universidad de Alicante


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ferromagnetism is predicted in undoped diluted magnetic semiconductors illuminated by intense sub-band-gap laser radiation . The mechanism for photoinduced ferromagnetism is coherence between conduction and valence bands induced by the light which leads to an optical exchange interaction. The ferromagnetic critical temperature TC depends both on the properties of the material and on the frequency and intensity of the laser and could be above 1K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A combined chemometrics-metabolomics approach [excitation–emission matrix (EEM) fluorescence spectroscopy, nuclear magnetic resonance (NMR) and high performance liquid chromatography–mass spectrometry (HPLC–MS)] was used to analyse the rhizodeposition of the tritrophic system: tomato, the plant-parasitic nematode Meloidogyne javanica and the nematode-egg parasitic fungus Pochonia chlamydosporia. Exudates from M. javanica roots were sampled at root penetration (early) and gall development (late). EMM indicated that late root exudates from M. javanica treatments contained more aromatic amino acid compounds than the rest (control, P. chlamydosporia or P. chlamydosporia and M. javanica). 1H NMR showed that organic acids (acetate, lactate, malate, succinate and formic acid) and one unassigned aromatic compound (peak no. 22) were the most relevant metabolites in root exudates. Robust principal component analysis (PCA) grouped early exudates for nematode (PC1) or fungus presence (PC3). PCA found (PC1, 73.31 %) increased acetate and reduced lactate and an unassigned peak no. 22 characteristic of M. javanica root exudates resulting from nematode invasion and feeding. An increase of peak no. 22 (PC3, 4.82 %) characteristic of P. chlamydosporia exudates could be a plant “primer” defence. In late ones in PC3 (8.73 %) the presence of the nematode grouped the samples. HPLC–MS determined rhizosphere fingerprints of 16 (early) and 25 (late exudates) m/z signals, respectively. Late signals were exclusive from M. javanica exudates confirming EEM and 1H NMR results. A 235 m/z signal reduced in M. javanica root exudates (early and late) could be a repressed plant defense. This metabolomic approach and other rhizosphere -omics studies could help to improve plant growth and reduce nematode damage sustainably.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A wide class of nanomagnets shows striking quantum behaviour, known as quantum spin tunnelling (QST): instead of two degenerate ground states with opposite magnetizations, a bonding-antibonding pair forms, resulting in a splitting of the ground-state doublet with wave functions linear combination of two classically opposite magnetic states, leading to the quenching of their magnetic moment. Here we study how QST is destroyed and classical behaviour emerges in the case of magnetic adatoms, where, contrary to larger nanomagnets, the QST splitting is in some instances bigger than temperature and broadening. We analyze two different mechanisms for the renormalization of the QST splitting: Heisenberg exchange between different atoms, and Kondo exchange interaction with the substrate electrons. Sufficiently strong spin-substrate and spin-spin coupling renormalize the QST splitting to zero allowing the environmental decoherence to eliminate superpositions between classical states, leading to the emergence of spontaneous magnetization. Importantly, we extract the strength of the Kondo exchange for various experiments on individual adatoms and construct a phase diagram for the classical to quantum transition.