1 resultado para loop closure
em Universidad de Alicante
Filtro por publicador
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (6)
- Aquatic Commons (8)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archive of European Integration (13)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (7)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (149)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (127)
- CentAUR: Central Archive University of Reading - UK (42)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (44)
- Cochin University of Science & Technology (CUSAT), India (5)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (4)
- Diposit Digital de la UB - Universidade de Barcelona (2)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (4)
- Indian Institute of Science - Bangalore - Índia (80)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (2)
- National Center for Biotechnology Information - NCBI (45)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (5)
- Publishing Network for Geoscientific & Environmental Data (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (71)
- Queensland University of Technology - ePrints Archive (80)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (83)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- School of Medicine, Washington University, United States (3)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (16)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (2)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (5)
- Université de Montréal, Canada (2)
- University of Connecticut - USA (2)
- University of Michigan (36)
- University of Queensland eSpace - Australia (35)
- University of Southampton, United Kingdom (2)
- University of Washington (1)
- WestminsterResearch - UK (3)
Resumo:
In this paper we provide the proof of a practical point-wise characterization of the set RP defined by the closure set of the real projections of the zeros of an exponential polynomial P(z) = Σn j=1 cjewjz with real frequencies wj linearly independent over the rationals. As a consequence, we give a complete description of the set RP and prove its invariance with respect to the moduli of the c′ js, which allows us to determine exactly the gaps of RP and the extremes of the critical interval of P(z) by solving inequations with positive real numbers. Finally, we analyse the converse of this result of invariance.