5 resultados para log-based cost analysis

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work addresses the optimization of ammonia–water absorption cycles for cooling and refrigeration applications with economic and environmental concerns. Our approach combines the capabilities of process simulation, multi-objective optimization (MOO), cost analysis and life cycle assessment (LCA). The optimization task is posed in mathematical terms as a multi-objective mixed-integer nonlinear program (moMINLP) that seeks to minimize the total annualized cost and environmental impact of the cycle. This moMINLP is solved by an outer-approximation strategy that iterates between primal nonlinear programming (NLP) subproblems with fixed binaries and a tailored mixed-integer linear programming (MILP) model. The capabilities of our approach are illustrated through its application to an ammonia–water absorption cycle used in cooling and refrigeration applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a novel image processing algorithm providing good preliminary capabilities for in vitro detection of malaria. The proposed concept is based upon analysis of the temporal variation of each pixel. Changes in dark pixels mean that inter cellular activity happened, indicating the presence of the malaria parasite inside the cell. Preliminary experimental results involving analysis of red blood cells being either healthy or infected with malaria parasites, validated the potential benefit of the proposed numerical approach.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Commercial off-the-shelf microprocessors are the core of low-cost embedded systems due to their programmability and cost-effectiveness. Recent advances in electronic technologies have allowed remarkable improvements in their performance. However, they have also made microprocessors more susceptible to transient faults induced by radiation. These non-destructive events (soft errors), may cause a microprocessor to produce a wrong computation result or lose control of a system with catastrophic consequences. Therefore, soft error mitigation has become a compulsory requirement for an increasing number of applications, which operate from the space to the ground level. In this context, this paper uses the concept of selective hardening, which is aimed to design reduced-overhead and flexible mitigation techniques. Following this concept, a novel flexible version of the software-based fault recovery technique known as SWIFT-R is proposed. Our approach makes possible to select different registers subsets from the microprocessor register file to be protected on software. Thus, design space is enriched with a wide spectrum of new partially protected versions, which offer more flexibility to designers. This permits to find the best trade-offs between performance, code size, and fault coverage. Three case studies have been developed to show the applicability and flexibility of the proposal.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We present a disposable optical sensor for Ascorbic Acid (AA). It uses a polyaniline based electrochromic sensing film that undergoes a color change when exposed to solutions of ascorbic acid at pH 3.0. The color is monitored by a conventional digital camera working with the hue (H) color coordinate. The electrochromic film was deposited on an Indium Tin Oxide (ITO) electrode by cyclic voltammetry and then characterized by atomic force microscopy, electrochemical and spectroscopic techniques. An estimation of the initial rate of H, as ΔH/Δt, is used as the analytical parameter and resulted in the following logarithmic relationship: ΔH/Δt = 0.029 log[AA] + 0.14, with a limit of detection of 17 μM. The relative standard deviation when using the same membrane 5 times was 7.4% for the blank, and 2.6% (for n = 3) on exposure to ascorbic acid in 160 μM concentration. The sensor is disposable and its applicability to pharmaceutical analysis was demonstrated. This configuration can be extended for future handheld configurations.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

There is an increasing concern to reduce the cost and overheads during the development of reliable systems. Selective protection of most critical parts of the systems represents a viable solution to obtain a high level of reliability at a fraction of the cost. In particular to design a selective fault mitigation strategy for processor-based systems, it is mandatory to identify and prioritize the most vulnerable registers in the register file as best candidates to be protected (hardened). This paper presents an application-based metric to estimate the criticality of each register from the microprocessor register file in microprocessor-based systems. The proposed metric relies on the combination of three different criteria based on common features of executed applications. The applicability and accuracy of our proposal have been evaluated in a set of applications running in different microprocessors. Results show a significant improvement in accuracy compared to previous approaches and regardless of the underlying architecture.