3 resultados para liquid metal flows

em Universidad de Alicante


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new design route is proposed in order to fabricate aluminum matrix diamond-containing composite materials with optimized values of thermal conductivity (TC) for thermal management applications. The proper size ratio and proportions of particulate diamond–diamond and diamond–SiC bimodal mixtures are selected based on calculations with predictive schemes, which combine two main issues: (i) the volume fraction of the packed particulate mixtures, and (ii) the influence of different types of particulates (with intrinsically different metal/reinforcement interfacial thermal conductances) on the overall thermal conductivity of the composite material. The calculated results are validated by comparison with measurements on composites fabricated by gas pressure infiltration of aluminum into preforms of selected compositions of particle mixtures. Despite the relatively low quality (low price) of the diamond particles used in this work, outstanding values of TC are encountered: a maximum of 770 W/m K for Al/diamond–diamond and values up to 690 W/m K for Al/diamond–SiC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work results for the flexural strength and the thermal properties of interpenetrated graphite preforms infiltrated with Al-12wt%Si are discussed and compared to those for packed graphite particles. To make this comparison relevant, graphite particles of four sizes in the range 15–124 μm, were obtained by grinding the graphite preform. Effects of the pressure applied to infiltrate the liquid alloy on composite properties were investigated. In spite of the largely different reinforcement volume fractions (90% in volume in the preform and around 50% in particle compacts) most properties are similar. Only the Coefficient of Thermal Expansion is 50% smaller in the preform composites. Thermal conductivity of the preform composites (slightly below 100 W/m K), may be increased by reducing the graphite content, alloying, or increasing the infiltration pressure. The strength of particle composites follows Griffith criterion if the defect size is identified with the particle diameter. On the other hand, the composites strength remains increasing up to unusually high values of the infiltration pressure. This is consistent with the drainage curves measured in this work. Mg and Ti additions are those that produce the most significant improvements in performance. Although extensive development work remains to be done, it may be concluded that both mechanical and thermal properties make these materials suitable for the fabrication of piston engines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here, we present experimental and computational evidences to support that rocksalt cubic VO is a strongly correlated metal with non-Fermi-liquid thermodynamics and an unusually strong spin-lattice coupling. An unexpected change of sign of metallic thermopower with composition is tentatively ascribed to the presence of a pseudogap in the density of states. These properties are discussed as signatures of the proximity to a magnetic quantum phase transition. The results are summarized in an electronic phase diagram for the 3d monoxides, which resembles that of other strongly correlated systems. The structural and electronic simplicity of 3d monoxides makes them ideal candidates to progress in the understanding of highly correlated electron systems.