6 resultados para leaf functional traits
em Universidad de Alicante
Resumo:
Heavy metal contamination and drought are expected to increase in large areas worldwide. However, their combined effect on plant performance has been scantly analyzed. This study examines the effect of Zn supply at different water availabilities on morpho-physiological traits of Quercus suber L. in order to analyze the combined effects of both stresses. Seedlings were treated with four levels of zinc from 3 to 150 µM and exposed to low watering (LW) or high watering (HW) frequency in hydroponic culture, using a growth chamber. Under both watering regimes, Zn concentration in leaves and roots increased with Zn increment in nutrient solution. Nevertheless, at the highest Zn doses, Zn tissue concentrations were almost twice in HW than in LW seedlings. Functional traits as leaf photosynthetic rate and root hydraulic conductivity, and morphological traits as root length and root biomass decreased significantly in response to Zn supply. Auxin levels increased with Zn concentrations, suggesting the involvement of this phytohormone in the seedling response to this element. LW seedlings exposed to 150 µM Zn showed higher root length and root biomass than HW seedlings exposed to the same Zn dose. Our results suggest that low water availability could mitigate Zn toxicity by limiting internal accumulation. Morphological traits involved in the response to both stresses probably contributed to this response.
Resumo:
Soil enzymes are critical to soil nutrient cycling function but knowledge on the factors that control their response to major disturbances such as wildfires remains very limited. We evaluated the effect of fire-related plant functional traits (resprouting and seeding) on the resistance and resilience to fire of two soil enzyme activities involved in phosphorus and carbon cycling (acid phosphatase and β-glucosidase) in a Mediterranean shrublands in SE Spain. Using experimental fires, we compared four types of shrubland microsites: SS (vegetation patches dominated by seeder species), RR (patches dominated by resprouter species), SR (patches co-dominated by seeder and resprouter species), and IP (shrub interpatches). We assessed pre- and post-fire activities of the target soil enzymes, available P, soil organic C, and plant cover dynamics over three years after the fire. Post-fire regeneration functional groups (resprouter, seeder) modulated both pre- and post-fire activity of acid phosphatase and β-glucosidase, with higher activity in RR and SR patches than in SS patches and IP. However, we found no major differences in enzyme resistance and resilience between microsite types, except for a trend towards less resilience in SS patches. Fire similarly reduced the activity of both enzymes. However, acid phosphatase and β-glucosidase showed contrasting post-fire dynamics. While β-glucosidase proved to be rather resilient to fire, fully recovering three years after fire, acid phosphatase showed no signs of recovery in that period. Overall, the results indicate a positive influence of resprouter species on soil enzyme activity that is very resistant to fire. Long-lasting decrease in acid phosphatase activity probably resulted from the combined effect of P availability and post-fire drought. Our results provide insights on how plant functional traits modulate soil biochemical and microbiological response to fire in Mediterranean fire-prone shrublands.
Resumo:
Los métodos de máxima verosimilitud (MMV) ofrecen un marco alternativo a la estadística frecuentista convencional, alejándose del uso del p-valor para el rechazo de una única hipótesis nula y optando por el uso de las verosimilitudes para evaluar el grado de apoyo en los datos a un conjunto de hipótesis alternativas (o modelos) de interés para el investigador. Estos métodos han sido ampliamente aplicados en ecología en el marco de los modelos de vecindad. Dichos modelos usan una aproximación espacialmente explícita para describir procesos demográficos de plantas o procesos ecosistémicos en función de los atributos de los individuos vecinos. Se trata por tanto de modelos fenomenológicos cuya principal utilidad radica en funcionar como herramientas de síntesis de los múltiples mecanismos por los que las especies pueden interactuar e influenciar su entorno, proporcionando una medida del efecto per cápita de individuos de distintas características (ej. tamaño, especie, rasgos fisiológicos) sobre los procesos de interés. La gran ventaja de aplicar los MMV en el marco de los modelos de vecindad es que permite ajustar y comparar múltiples modelos que usen distintos atributos de los vecinos y/o formas funcionales para seleccionar aquel con mayor soporte empírico. De esta manera, cada modelo funcionará como un “experimento virtual” para responder preguntas relacionadas con la magnitud y extensión espacial de los efectos de distintas especies coexistentes, y extraer conclusiones sobre posibles implicaciones para el funcionamiento de comunidades y ecosistemas. Este trabajo sintetiza las técnicas de implementación de los MMV y los modelos de vecindad en ecología terrestre, resumiendo su uso hasta la fecha y destacando nuevas líneas de aplicación.
Resumo:
Forest plantations have been extensively used to combat desertification. In drylands, harsh climate conditions and unfertile soils often preclude seedling establishment. The improvement in seedling quality by manipulating nutrient availability could contribute to increase planting success. However, morpho-functional traits defining optimum seedling quality in drylands, and the fertilization schemes to achieve them, are still under discussion. Several studies suggest that well fertilized seedlings may perform better than nutrient limited seedlings in these environments. However, recent works have shown opposite results. In this review, we discuss the concept of seedling quality in drylands based on an evaluation of the effects of nutrient manipulation on seedling morpho-functional traits and field performance. According to existing data, we hypothesize that nutrient-limited small seedlings may be better adapted to arid environments and unfavorable microsites, where access to water is uncertain and a conservative water use strategy may be advantageous. In contrast, in dry sub-humid areas, areas with deep soils, protected from excess radiation, and areas where irrigation is feasible, well-fertilized big seedlings with high root growth potential may have more chances of success. We discuss this theory in the context of the multiple objectives of dryland restoration and the environmental constrains posed by these areas, and identify knowledge gaps that should be targeted to test our hypothesis.
Resumo:
To obtain insights into archaeal nitrogen signaling and haloadaptation of the nitrogen/carbon/energy-signaling protein PII, we determined crystal structures of recombinantly produced GlnK2 from the extreme halophilic archaeon Haloferax mediterranei, complexed with AMP or with the PII effectors ADP or ATP, at respective resolutions of 1.49 Å, 1.45 Å, and 2.60 Å. A unique trait of these structures was a three-tongued crown protruding from the trimer body convex side, formed by an 11-residue, N-terminal, highly acidic extension that is absent from structurally studied PII proteins. This extension substantially contributed to the very low pI value, which is a haloadaptive trait of H. mediterranei GlnK2, and participated in hexamer-forming contacts in one crystal. Similar acidic N-extensions are shown here to be common among PII proteins from halophilic organisms. Additional haloadaptive traits prominently represented in H. mediterranei GlnK2 are a very high ratio of small residues to large hydrophobic aliphatic residues, and the highest ratio of polar to nonpolar exposed surface for any structurally characterized PII protein. The presence of a dense hydration layer in the region between the three T-loops might also be a haloadaptation. Other unique findings revealed by the GlnK2 structure that might have functional relevance are: the adoption by its T-loop of a three-turn α-helical conformation, perhaps related to the ability of GlnK2 to directly interact with glutamine synthetase; and the firm binding of AMP, confirmed by biochemical binding studies with ATP, ADP, and AMP, raising the possibility that AMP could be an important PII effector, at least in archaea.
Resumo:
Standing dead biomass retention is considered one of the most relevant fuel structural traits to affect plant flammability. However, very little is known about the biological significance of this trait and its distribution between different functional groups. Our aim was to analyse how the proportion of dead biomass produced in Mediterranean species is related to the successional niche of species (early-, mid- and late-successional stages) and the regeneration strategy of species (seeders and resprouters). We evaluated biomass distribution by size classes and standing dead biomass retention in nine dominant species from the Mediterranean Basin in different development stages (5, 9, 14 and 26 years since the last fire). The results revealed significant differences in the standing dead biomass retention of species that presented a distinct successional niche or regeneration strategy. These differences were restricted to the oldest ages studied (>9 years). Tree and small tree resprouters, typical in late-successional stages, presented slight variations with age and a less marked trend to retain dead biomass, while seeder shrubs and dwarf shrubs, characteristic of early-successional stages, showed high dead biomass loads. Our results suggest that the species that tend to retain more dead branches are colonising species that may promote fire in early-successional stages.