4 resultados para land suitability analysis

em Universidad de Alicante


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A twenty-year period of severe land subsidence evolution in the Alto Guadalentín Basin (southeast Spain) is monitored using multi-sensor SAR images, processed by advanced differential interferometric synthetic aperture radar (DInSAR) techniques. The SAR images used in this study consist of four datasets acquired by ERS-1/2, ENVISAT, ALOS and COSMO-SkyMed satellites between 1992 and 2012. The integration of ground surface displacement maps retrieved for different time periods allows us to quantify up to 2.50 m of cumulated displacements that occurred between 1992 and 2012 in the Alto Guadalentín Basin. DInSAR results were locally compared with global positioning system (GPS) data available for two continuous stations located in the study area, demonstrating the high consistency of local vertical motion measurements between the two different surveying techniques. An average absolute error of 4.6 ± 4 mm for the ALOS data and of 4.8 ± 3.5 mm for the COSMO-SkyMed data confirmed the reliability of the analysis. The spatial analysis of DInSAR ground surface displacement reveals a direct correlation with the thickness of the compressible alluvial deposits. Detected ground subsidence in the past 20 years is most likely a consequence of a 100–200 m groundwater level drop that has persisted since the 1970s due to the overexploitation of the Alto Guadalentín aquifer system. The negative gradient of the pore pressure is responsible for the extremely slow consolidation of a very thick (> 100 m) layer of fine-grained silt and clay layers with low vertical hydraulic permeability (approximately 50 mm/h) wherein the maximum settlement has still not been reached.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multi-sensor advanced DInSAR analyses have been performed and compared with two GPS station measurements, in order to evaluate the land subsidence evolution in a 20-year period, in the Alto Guadalentín Basin where the highest rate of man-induced subsidence (> 10 cm yr−1) of Europe had been detected. The control mechanisms have been examined comparing the advanced DInSAR data with conditioning and triggering factors (i.e. isobaths of Plio-Quaternary deposits, soft soil thickness and piezometric level).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The new Spanish legislation in Energy Saving, similar to European regulation, provides new technical requirements to adequate technical solutions used in integral rehabilitation of existing buildings. The aim of this paper is to present, analyze and discuss the main thermal insulation constructive solutions best suited to a Mediterranean climate, and conclude on their suitability under the legislation in Energy Saving. The proposed methodology is based on the most usual constructive solutions in integral rehabilitation of buildings by analyzing their outstanding design features, by studying its construction details and then by applying the software provided by the Spanish legislation of energy efficiency in buildings. The results of the study evaluate and classify several solutions for façade rehabilitation according to energy efficiency criteria and their suitability for this type of weather, verifying the necessity of using software applications in energy saving for the proper design of constructive solutions in building rehabilitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Beijing is one of the most water-stressed cities in the world. Due to over-exploitation of groundwater, the Beijing region has been suffering from land subsidence since 1935. In this study, the Small Baseline InSAR technique has been employed to process Envisat ASAR images acquired between 2003 and 2010 and TerraSAR-X stripmap images collected from 2010 to 2011 to investigate land subsidence in the Beijing region. The maximum subsidence is seen in the eastern part of Beijing with a rate greater than 100 mm/year. Comparisons between InSAR and GPS derived subsidence rates show an RMS difference of 2.94 mm/year with a mean of 2.41 ± 1.84 mm/year. In addition, a high correlation was observed between InSAR subsidence rate maps derived from two different datasets (i.e., Envisat and TerraSAR-X). These demonstrate once again that InSAR is a powerful tool for monitoring land subsidence. InSAR derived subsidence rate maps have allowed for a comprehensive spatio-temporal analysis to identify the main triggering factors of land subsidence. Some interesting relationships in terms of land subsidence were found with groundwater level, active faults, accumulated soft soil thickness and different aquifer types. Furthermore, a relationship with the distances to pumping wells was also recognized in this work.