7 resultados para intermediates
em Universidad de Alicante
Resumo:
Binap-AgSbF6 catalyzed 1,3-dipolar cycloadditions between azomethine ylides and electrophilic alkenes are described and compared with analogous transformations mediated by other Binap-silver(I) salt complexes. Maleimides and 1,2-bis(phenylsulfonyl)ethylene are suitable dipolarophiles for obtaining very good enantioselectivities, even better values are generated by a multicomponent version. There are some very interesting applications of the disulfonylated cycloadducts in the total synthesis of cis-2,5-disubstituted pyrrolidines, precursors of natural products, or valuable intermediates in the synthesis of antiviral compounds.
Resumo:
The isoprene-mediated lithiation, with lithium metal, of different imidazole derivatives is an interesting methodology for their functionalization. Studies of different possible intermediates involved in the reaction employing density functional theory calculations, at the B3LYP/6-311++G(d,p) level are considered. A plausible mechanism is described, in which isoprene is reduced, to the corresponding radical anion, in the presence of Li(s), acting then as a base deprotonating N-methylimidazole (NMI) and producing the 1,1-dimethylallyl radical. This radical is further reduced by the excess of lithium proceeding once more as a base. This final step produces stable final products that compensate the previous equilibriums, making favourable the whole process.
Resumo:
Recoverable (Sa)-binam-l-prolinamide in combination with benzoic acid is used as catalysts in the direct aldol reaction between cycloalkyl, alkyl, and α-functionalized ketones and aldehydes under solvent-free reaction conditions. Three different methods are assayed: simple conventional magnetic stirring, magnetic stirring after previous dissolution in THF and evaporation, and ball mill technique. These procedures allow one to reduce not only the amount of required ketone to 2 equiv but also the reaction time to give the aldol products with regio-, diastereo-, and enantioselectivities comparable to those in organic or aqueous solvents. Generally anti-isomers are mainly obtained with enantioselectivities up to 97%. The reaction can be carried out under these conditions also using aldehydes as nucleophiles, yielding after in situ reduction of the aldol products the corresponding chiral 1,3-diols with moderate to high enantioselectivities mainly as anti-isomers. The aldol reaction has been studied by the use of positive ESI-MS technique, providing the evidence of the formation of the corresponding enamine−iminium intermediates.
Resumo:
The present work refers to clay–graphene nanomaterials prepared by a green way using caramel from sucrose and two types of natural clays (montmorillonite and sepiolite) as precursors, with the aim of evaluating their potential use in hydrogen storage. The impregnation of the clay substrates by caramel in aqueous media, followed by a thermal treatment in the absence of oxygen of these clay–caramel intermediates gives rise to graphene-like materials, which remain strongly bound to the silicate support. The nature of the resulting materials was characterized by different techniques such as XRD, Raman spectroscopy and TEM, as well as by adsorption isotherms of N2, CO2 and H2O. These carbon–clay nanocomposites can act as adsorbents for hydrogen storage, achieving, at 298 K and 20 MPa, over 0.1 wt% of hydrogen adsorption excess related to the total mass of the system, and a maximum value close to 0.4 wt% of hydrogen specifically related to the carbon mass. The very high isosteric heat for hydrogen sorption determined from adsorption isotherms at different temperatures (14.5 kJ mol−1) fits well with the theoretical values available for hydrogen storage on materials that show a strong stabilization of the H2 molecule upon adsorption.
Resumo:
Azomethine imines are considered 1,3-dipoles of the aza-allyl type which are transient intermediates and should be generated in situ but can also be stable and isolable compounds. They react with electron-rich and electron-poor olefins as well as with acetylenic compounds and allenoates mainly by a [3 + 2] cycloaddition but they can also take part in [3 + 3], [4 + 3], [3 + 2 + 2] and [5 + 3] with different dipolarophiles. These 1,3-dipolar cycloadditions (1,3-DC) can be performed not only under thermal or microwave conditions but also using metallo- and organocatalytic systems. In recent years enantiocatalyzed 1,3-dipolar cycloadditions have been extensively considered and applied to the synthesis of a great variety of dinitrogenated heterocycles with biological activity. Acyclic azomethine imines derived from mono and disubstituted hydrazones could be generated by prototropy under heating or by using Lewis or Brønsted acids to give, after [3 + 2] cycloadditions, pyrazolidines and pyrazolines. Cyclic azomethine imines, incorporating a C–N bond in a ring, such as isoquinolinium imides are the most widely used dipoles in normal and inverse-electron demand 1,3-DC allowing the synthesis of tetrahydro-, dihydro- and unsaturated pyrazolo[1,5-a]isoquinolines in racemic and enantioenriched forms with interesting biological activity. Pyridinium and quinolinium imides give the corresponding pyrazolopyridines and indazolo[3,2-a]isoquinolines, respectively. In the case of cyclic azomethine imines with an N–N bond incorporated into a ring, N-alkylidene-3-oxo-pyrazolidinium ylides are the most popular stable and isolated dipoles able to form dinitrogen-fused saturated and unsaturated pyrazolopyrazolones as racemic or enantiomerically enriched compounds present in many pharmaceuticals, agrochemicals and other useful chemicals.
Resumo:
The electro-oxidation of carbon materials enormously degrades their performance and limits their wider utilization in multiple electrochemical applications. In this work, the positive influence of phosphorus functionalities on the overall electrochemical stability of carbon materials has been demonstrated under different conditions. We show that the extent and selectivity of electroxidation in P-containing carbons are completely different to those observed in conventional carbons without P. The electro-oxidation of P-containing carbons involves the active participation of phosphorus surface groups, which are gradually transformed at high potentials from less-to more-oxidized species to slow down the introduction of oxygen groups on the carbon surface (oxidation) and the subsequent generation of (C*OOH)-like unstable promoters of electro-gasification. The highest-oxidized P groups (–C–O–P-like species) seem to distribute the gained oxygen to neighboring carbon sites, which finally suffer oxidation and/or gasification. So it is thought that P-groups could act as mediators of carbon oxidation although including various steps and intermediates compared to electroxidation in P-free materials.
Resumo:
The hexahydride complex OsH6(PiPr3)2 (1) activates the C–OMe bond of 1-(2-methoxy-2-oxoethyl)-3-methylimidazolium chloride (2), in addition to promoting the direct metalation of the imidazolium group, to afford a five-coordinate OsCl(acyl-NHC)(PiPr3)2 (3) compound. The latter coordinates carbon monoxide, oxygen, and molecular hydrogen to give the corresponding carbonyl (4), dioxygen (5), and dihydrogen (6) derivatives. Complex 3 also promotes the heterolytic bond activation of pinacolborane (HBpin), using the acyl oxygen atom as a pendant Lewis base. The hydride ligand and the Bpin substituent of the Fischer-type carbene of the resulting complex 7 activate the O–H bond of alcohols and water. As a consequence, complex 3 is a metal ligand cooperating catalyst for the generation of molecular hydrogen, by means of both the alcoholysis and hydrolysis of pinacolborane, via the intermediates 7 and 6.