2 resultados para interaction genotype-environment
em Universidad de Alicante
Resumo:
One of the most important tenets of e-learning is that it bridges work and learning. A great e-learning experience brings learning into the work environment. This is a key point, the capacity to construct a work environment when the student can develop proper tasks to complete the learning process. This paper describes a work environment based on the development of two tools, an exercises editor and an exercises viewer. Both tools are able to manage color images where, because of the implementation of basic steganographic techniques, it is possible to add information, exercises, questions, and so on. The exercises editor allows to decide which information must be visible or remain hidden to the user, when the image is loaded in the exercises viewer. Therefore, it is possible to hide the solutions of the proposed tasks; this is very useful to complete a self-evaluation learning process. These tools constitute a learning architecture with the final objective that learners can apply and practice new concepts or skills.
Resumo:
New low cost sensors and the new open free libraries for 3D image processing are permitting to achieve important advances for robot vision applications such as tridimensional object recognition, semantic mapping, navigation and localization of robots, human detection and/or gesture recognition for human-machine interaction. In this paper, a method to recognize the human hand and to track the fingers is proposed. This new method is based on point clouds from range images, RGBD. It does not require visual marks, camera calibration, environment knowledge and complex expensive acquisition systems. Furthermore, this method has been implemented to create a human interface in order to move a robot hand. The human hand is recognized and the movement of the fingers is analyzed. Afterwards, it is imitated from a Barret hand, using communication events programmed from ROS.