8 resultados para insulators
em Universidad de Alicante
Resumo:
We consider dilute magnetic doping in the surface of a three dimensional topological insulator where a two dimensional Dirac electron gas resides. We find that exchange coupling between magnetic atoms and the Dirac electrons has a strong and peculiar effect on both. First, the exchange-induced single ion magnetic anisotropy is very large and favors off-plane orientation. In the case of a ferromagnetically ordered phase, we find a colossal magnetic anisotropy energy, of the order of the critical temperature. Second, a persistent electronic current circulates around the magnetic atom and, in the case of a ferromagnetic phase, around the edges of the surface.
Resumo:
We present a mechanism for persistent charge current. Quantum spin Hall insulators hold dissipationless spin currents in their edges so that, for a given spin orientation, a net charge current flows which is exactly compensated by the counterflow of the opposite spin. Here we show that ferromagnetic order in the edge upgrades the spin currents into persistent charge currents without applied fields. For that matter, we study the Hubbard model including Haldane-Kane-Mele spin-orbit coupling in a zigzag ribbon and consider the case of graphene. We find three electronic phases with magnetic edges that carry currents reaching 0.4 nA, comparable to persistent currents in metallic rings, for the small spin-orbit coupling in graphene. One of the phases is a valley half metal.
Resumo:
Two-dimensional insulators with time-reversal symmetry can have two topologically different phases, the quantum spin Hall and the normal phase. The former is revealed by the existence of conducting edge states that are topologically protected. Here we show that the reaction to impurity, in bulk, is radically different in the two phases and can be used as a marker for the topological phase. Within the context of the Kane-Mele model for graphene, we find that strictly normalizable in-gap impurity states only occur in the quantum spin Hall phase and carry a dissipationless current whose chirality is determined by the spin and pseudospin of the residing electron.
Resumo:
Spin–orbit coupling changes graphene, in principle, into a two-dimensional topological insulator, also known as quantum spin Hall insulator. One of the expected consequences is the existence of spin-filtered edge states that carry dissipationless spin currents and undergo no backscattering in the presence of non-magnetic disorder, leading to quantization of conductance. Whereas, due to the small size of spin–orbit coupling in graphene, the experimental observation of these remarkable predictions is unlikely, the theoretical understanding of these spin-filtered states is shedding light on the electronic properties of edge states in other two-dimensional quantum spin Hall insulators. Here we review the effect of a variety of perturbations, like curvature, disorder, edge reconstruction, edge crystallographic orientation, and Coulomb interactions on the electronic properties of these spin filtered states.
Resumo:
The so-called quantum spin Hall phase is a topologically nontrivial insulating phase that is predicted to appear in graphene and graphenelike systems. In this paper we address the question of whether this topological property persists in multilayered systems. We consider two situations: purely multilayer graphene and heterostructures where graphene is encapsulated by trivial insulators with a strong spin-orbit coupling. We use a four-orbital tight-binding model that includes full atomic spin-orbit coupling and we calculate the Z2 topological invariant of the bulk states as well as the edge states of semi-infinite crystals with armchair termination. For homogeneous multilayers we find that even when the spin-orbit interaction opens a gap for all possible stackings, only those with an odd number of layers host gapless edge states while those with an even number of layers are trivial insulators. For heterostructures where graphene is encapsulated by trivial insulators, it turns out that interlayer coupling is able to induce a topological gap whose size is controlled by the spin-orbit coupling of the encapsulating materials, indicating that the quantum spin Hall phase can be induced by proximity to trivial insulators.
Resumo:
Both spin and orbital degrees of freedom contribute to the magnetic moment of isolated atoms. However, when inserted in crystals, atomic orbital moments are quenched because of the lack of rotational symmetry that protects them when isolated. Thus, the dominant contribution to the magnetization of magnetic materials comes from electronic spin. Here we show that nanoislands of quantum spin Hall insulators can host robust orbital edge magnetism whenever their highest occupied Kramers doublet is singly occupied, upgrading the spin edge current into a charge current. The resulting orbital magnetization scales linearly with size, outweighing the spin contribution for islands of a few nm in size. This linear scaling is specific of the Dirac edge states and very different from Schrodinger electrons in quantum rings. By modeling Bi(111) flakes, whose edge states have been recently observed, we show that orbital magnetization is robust with respect to disorder, thermal agitation, shape of the island, and crystallographic direction of the edges, reflecting its topological protection.
Resumo:
A clear demonstration of topological superconductivity (TS) and Majorana zero modes remains one of the major pending goals in the field of topological materials. One common strategy to generate TS is through the coupling of an s-wave superconductor to a helical half-metallic system. Numerous proposals for the latter have been put forward in the literature, most of them based on semiconductors or topological insulators with strong spin-orbit coupling. Here, we demonstrate an alternative approach for the creation of TS in graphene-superconductor junctions without the need for spin-orbit coupling. Our prediction stems from the helicity of graphene’s zero-Landau-level edge states in the presence of interactions and from the possibility, experimentally demonstrated, of tuning their magnetic properties with in-plane magnetic fields. We show how canted antiferromagnetic ordering in the graphene bulk close to neutrality induces TS along the junction and gives rise to isolated, topologically protected Majorana bound states at either end. We also discuss possible strategies to detect their presence in graphene Josephson junctions through Fraunhofer pattern anomalies and Andreev spectroscopy. The latter, in particular, exhibits strong unambiguous signatures of the presence of the Majorana states in the form of universal zero-bias anomalies. Remarkable progress has recently been reported in the fabrication of the proposed type of junctions, which offers a promising outlook for Majorana physics in graphene systems.
Resumo:
Sustainability, understood in its beginnings as a common horizon for multiple practices and fields of study, has gradually given way to the development of increasingly sophisticated tools, with distinct dominant meanings established for each discipline. Within the field of material technologies for architectural production, sustainability seems to have found its most fertile ground in topics such as recycling, the use of "bio" materials, or energetic efficiency. However, to improve the understanding of the impact of technology on our ways of living, it appears increasingly necessary to move from the deterministic logic of sustainability into the relational domain of ecology, where the use and deployment of technologies can be observed through the multiplicity of its effects and the diversity of actors involved. In this paper we will address the case of the rehabilitation of several traditional houses located in the Murcian town of Blanca to host the “Espacio Doméstico” VideoArt Center (EDOM). In this action the selection and implementation of technologies have been aimed at impacting on diverse aspects including local communities, digital manufacturing, recycling, and policies regarding the rehabilitation of heritage buildings. While the initial approach was to address housing recovery as a heterogeneous accumulation of stories, technologies or material deployments of the domestic, our intervention strategies ascribed to the different technologies the role of mediating with existing elements through the incorporation of the very different visions of sustainability. Thus, we displayed artifacts produced by digitally manufactured methacrylate assembled on IKEA structures, fluorescent power lines supported by insulators on the wall, fluorescent tattoos on walls and ceilings that guide and extend the configuration of existing flooring, esparto furniture and fabrics produced by the esparto women workers’ and village women’s associations, re-appropriations of old furniture through the implementation of new media technologies, etc. If we can see seduction as the process of converting affinities and disagreements into affirmative communication, then the EDOM proposal can be seen as an active seduction process between technologies and users who approach this kind of cultural artifacts. Through these permanently active processes, art technologies will refer the viewer to complex sensory experiences, where a combination of parody, memory and sound pushes the user to the limit of mere comprehension of works of art. This more relational approach to the issue of heritage rehabilitation, technology or art institutions is offered as an area of controversy and debate on the scope of political ecology and its potential impact on the architect’s professional practice.