5 resultados para information process development
em Universidad de Alicante
Resumo:
Thermal degradation of PLA is a complex process since it comprises many simultaneous reactions. The use of analytical techniques, such as differential scanning calorimetry (DSC) and thermogravimetry (TGA), yields useful information but a more sensitive analytical technique would be necessary to identify and quantify the PLA degradation products. In this work the thermal degradation of PLA at high temperatures was studied by using a pyrolyzer coupled to a gas chromatograph with mass spectrometry detection (Py-GC/MS). Pyrolysis conditions (temperature and time) were optimized in order to obtain an adequate chromatographic separation of the compounds formed during heating. The best resolution of chromatographic peaks was obtained by pyrolyzing the material from room temperature to 600 °C during 0.5 s. These conditions allowed identifying and quantifying the major compounds produced during the PLA thermal degradation in inert atmosphere. The strategy followed to select these operation parameters was by using sequential pyrolysis based on the adaptation of mathematical models. By application of this strategy it was demonstrated that PLA is degraded at high temperatures by following a non-linear behaviour. The application of logistic and Boltzmann models leads to good fittings to the experimental results, despite the Boltzmann model provided the best approach to calculate the time at which 50% of PLA was degraded. In conclusion, the Boltzmann method can be applied as a tool for simulating the PLA thermal degradation.
Resumo:
Business Intelligence (BI) applications have been gradually ported to the Web in search of a global platform for the consumption and publication of data and services. On the Internet, apart from techniques for data/knowledge management, BI Web applications need interfaces with a high level of interoperability (similar to the traditional desktop interfaces) for the visualisation of data/knowledge. In some cases, this has been provided by Rich Internet Applications (RIA). The development of these BI RIAs is a process traditionally performed manually and, given the complexity of the final application, it is a process which might be prone to errors. The application of model-driven engineering techniques can reduce the cost of development and maintenance (in terms of time and resources) of these applications, as they demonstrated by other types of Web applications. In the light of these issues, the paper introduces the Sm4RIA-B methodology, i.e., a model-driven methodology for the development of RIA as BI Web applications. In order to overcome the limitations of RIA regarding knowledge management from the Web, this paper also presents a new RIA platform for BI, called RI@BI, which extends the functionalities of traditional RIAs by means of Semantic Web technologies and B2B techniques. Finally, we evaluate the whole approach on a case study—the development of a social network site for an enterprise project manager.
New Approaches for Teaching Soil and Rock Mechanics Using Information and Communication Technologies
Resumo:
Soil and rock mechanics are disciplines with a strong conceptual and methodological basis. Initially, when engineering students study these subjects, they have to understand new theoretical phenomena, which are explained through mathematical and/or physical laws (e.g. consolidation process, water flow through a porous media). In addition to the study of these phenomena, students have to learn how to carry out estimations of soil and rock parameters in laboratories according to standard tests. Nowadays, information and communication technologies (ICTs) provide a unique opportunity to improve the learning process of students studying the aforementioned subjects. In this paper, we describe our experience of the incorporation of ICTs into the classical teaching-learning process of soil and rock mechanics and explain in detail how we have successfully developed various initiatives which, in summary, are: (a) implementation of an online social networking and microblogging service (using Twitter) for gradually sending key concepts to students throughout the semester (gradual learning); (b) detailed online virtual laboratory tests for a delocalized development of lab practices (self-learning); (c) integration of different complementary learning resources (e.g. videos, free software, technical regulations, etc.) using an open webpage. The complementary use to the classical teaching-learning process of these ICT resources has been highly satisfactory for students, who have positively evaluated this new approach.
Resumo:
Camera traps have become a widely used technique for conducting biological inventories, generating a large number of database records of great interest. The main aim of this paper is to describe a new free and open source software (FOSS), developed to facilitate the management of camera-trapped data which originated from a protected Mediterranean area (SE Spain). In the last decade, some other useful alternatives have been proposed, but ours focuses especially on a collaborative undertaking and on the importance of spatial information underpinning common camera trap studies. This FOSS application, namely, “Camera Trap Manager” (CTM), has been designed to expedite the processing of pictures on the .NET platform. CTM has a very intuitive user interface, automatic extraction of some image metadata (date, time, moon phase, location, temperature, atmospheric pressure, among others), analytical (Geographical Information Systems, statistics, charts, among others), and reporting capabilities (ESRI Shapefiles, Microsoft Excel Spreadsheets, PDF reports, among others). Using this application, we have achieved a very simple management, fast analysis, and a significant reduction of costs. While we were able to classify an average of 55 pictures per hour manually, CTM has made it possible to process over 1000 photographs per hour, consequently retrieving a greater amount of data.
Resumo:
Context: Global Software Development (GSD) allows companies to take advantage of talent spread across the world. Most research has been focused on the development aspect. However, little if any attention has been paid to the management of GSD projects. Studies report a lack of adequate support for management’s decisions made during software development, further accentuated in GSD since information is scattered throughout multiple factories, stored in different formats and standards. Objective: This paper aims to improve GSD management by proposing a systematic method for adapting Business Intelligence techniques to software development environments. This would enhance the visibility of the development process and enable software managers to make informed decisions regarding how to proceed with GSD projects. Method: A combination of formal goal-modeling frameworks and data modeling techniques is used to elicitate the most relevant aspects to be measured by managers in GSD. The process is described in detail and applied to a real case study throughout the paper. A discussion regarding the generalisability of the method is presented afterwards. Results: The application of the approach generates an adapted BI framework tailored to software development according to the requirements posed by GSD managers. The resulting framework is capable of presenting previously inaccessible data through common and specific views and enabling data navigation according to the organization of software factories and projects in GSD. Conclusions: We can conclude that the proposed systematic approach allows us to successfully adapt Business Intelligence techniques to enhance GSD management beyond the information provided by traditional tools. The resulting framework is able to integrate and present the information in a single place, thereby enabling easy comparisons across multiple projects and factories and providing support for informed decisions in GSD management.