7 resultados para industrial networks

em Universidad de Alicante


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optimal integration of work and its interaction with heat can represent large energy savings in industrial plants. This paper introduces a new optimization model for the simultaneous synthesis of work exchange networks (WENs), with heat integration for the optimal pressure recovery of process gaseous streams. The proposed approach for the WEN synthesis is analogous to the well-known problem of synthesis of heat exchanger networks (HENs). Thus, there is work exchange between high-pressure (HP) and low-pressure (LP) streams, achieved by pressure manipulation equipment running on common axes. The model allows the use of several units of single-shaft-turbine-compressor (SSTC), as well as stand-alone compressors, turbines and valves. Helper motors and generators are used to respond to any demand and excess of energy. Moreover, between the WEN stages the streams are sent to the HEN to promote thermal recovery, aiming to enhance the work integration. A multi-stage superstructure is proposed to represent the process. The WEN superstructure is optimized in a mixed-integer nonlinear programming (MINLP) formulation and solved with the GAMS software, with the goal of minimizing the total annualized cost. Three examples are conducted to verify the accuracy of the proposed method. In all case studies, the heat integration between WEN stages is essential to improve the pressure recovery, and to reduce the total costs involved in the process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of 3D data in mobile robotics provides valuable information about the robot’s environment. Traditionally, stereo cameras have been used as a low-cost 3D sensor. However, the lack of precision and texture for some surfaces suggests that the use of other 3D sensors could be more suitable. In this work, we examine the use of two sensors: an infrared SR4000 and a Kinect camera. We use a combination of 3D data obtained by these cameras, along with features obtained from 2D images acquired from these cameras, using a Growing Neural Gas (GNG) network applied to the 3D data. The goal is to obtain a robust egomotion technique. The GNG network is used to reduce the camera error. To calculate the egomotion, we test two methods for 3D registration. One is based on an iterative closest points algorithm, and the other employs random sample consensus. Finally, a simultaneous localization and mapping method is applied to the complete sequence to reduce the global error. The error from each sensor and the mapping results from the proposed method are examined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose the design of a real-time system to recognize and interprethand gestures. The acquisition devices are low cost 3D sensors. 3D hand pose will be segmented, characterized and track using growing neural gas (GNG) structure. The capacity of the system to obtain information with a high degree of freedom allows the encoding of many gestures and a very accurate motion capture. The use of hand pose models combined with motion information provide with GNG permits to deal with the problem of the hand motion representation. A natural interface applied to a virtual mirrorwriting system and to a system to estimate hand pose will be designed to demonstrate the validity of the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new mathematical programming model for the retrofit of heat exchanger networks (HENs), wherein the pressure recovery of process streams is conducted to enhance heat integration. Particularly applied to cryogenic processes, HENs retrofit with combined heat and work integration is mainly aimed at reducing the use of expensive cold services. The proposed multi-stage superstructure allows the increment of the existing heat transfer area, as well as the use of new equipment for both heat exchange and pressure manipulation. The pressure recovery of streams is carried out simultaneously with the HEN design, such that the process conditions (streams pressure and temperature) are variables of optimization. The mathematical model is formulated using generalized disjunctive programming (GDP) and is optimized via mixed-integer nonlinear programming (MINLP), through the minimization of the retrofit total annualized cost, considering the turbine and compressor coupling with a helper motor. Three case studies are performed to assess the accuracy of the developed approach, including a real industrial example related to liquefied natural gas (LNG) production. The results show that the pressure recovery of streams is efficient for energy savings and, consequently, for decreasing the HEN retrofit total cost especially in sub-ambient processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research developed in this work consists in proposing a set of techniques for management of social networks and their integration into the educational process. The proposals made are based on assumptions that have been proven with simple examples in a real scenario of university teaching. The results show that social networks have more capacity to spread information than educational web platforms. Moreover, educational social networks are developed in a context of freedom of expression intrinsically linked to Internet freedom. In that context, users can write opinions or comments which are not liked by the staff of schools. However, this feature can be exploited to enrich the educational process and improve the quality of their achievement. The network has covered needs and created new ones. So, the figure of the Community Manager is proposed as agent in educational context for monitoring network and aims to channel the opinions and to provide a rapid response to an academic problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Automated human behaviour analysis has been, and still remains, a challenging problem. It has been dealt from different points of views: from primitive actions to human interaction recognition. This paper is focused on trajectory analysis which allows a simple high level understanding of complex human behaviour. It is proposed a novel representation method of trajectory data, called Activity Description Vector (ADV) based on the number of occurrences of a person is in a specific point of the scenario and the local movements that perform in it. The ADV is calculated for each cell of the scenario in which it is spatially sampled obtaining a cue for different clustering methods. The ADV representation has been tested as the input of several classic classifiers and compared to other approaches using CAVIAR dataset sequences obtaining great accuracy in the recognition of the behaviour of people in a Shopping Centre.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Virtual Screening (VS) methods can considerably aid clinical research, predicting how ligands interact with drug targets. Most VS methods suppose a unique binding site for the target, but it has been demonstrated that diverse ligands interact with unrelated parts of the target and many VS methods do not take into account this relevant fact. This problem is circumvented by a novel VS methodology named BINDSURF that scans the whole protein surface to find new hotspots, where ligands might potentially interact with, and which is implemented in massively parallel Graphics Processing Units, allowing fast processing of large ligand databases. BINDSURF can thus be used in drug discovery, drug design, drug repurposing and therefore helps considerably in clinical research. However, the accuracy of most VS methods is constrained by limitations in the scoring function that describes biomolecular interactions, and even nowadays these uncertainties are not completely understood. In order to solve this problem, we propose a novel approach where neural networks are trained with databases of known active (drugs) and inactive compounds, and later used to improve VS predictions.