3 resultados para in-class test

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context. Classical supergiant X-ray binaries (SGXBs) and supergiant fast X-ray transients (SFXTs) are two types of high-mass X-ray binaries (HMXBs) that present similar donors but, at the same time, show very different behavior in the X-rays. The reason for this dichotomy of wind-fed HMXBs is still a matter of debate. Among the several explanations that have been proposed, some of them invoke specific stellar wind properties of the donor stars. Only dedicated empiric analysis of the donors’ stellar wind can provide the required information to accomplish an adequate test of these theories. However, such analyses are scarce. Aims. To close this gap, we perform a comparative analysis of the optical companion in two important systems: IGR J17544-2619 (SFXT) and Vela X-1 (SGXB). We analyze the spectra of each star in detail and derive their stellar and wind properties. As a next step, we compare the wind parameters, giving us an excellent chance of recognizing key differences between donor winds in SFXTs and SGXBs. Methods. We use archival infrared, optical and ultraviolet observations, and analyze them with the non-local thermodynamic equilibrium (NLTE) Potsdam Wolf-Rayet model atmosphere code. We derive the physical properties of the stars and their stellar winds, accounting for the influence of X-rays on the stellar winds. Results. We find that the stellar parameters derived from the analysis generally agree well with the spectral types of the two donors: O9I (IGR J17544-2619) and B0.5Iae (Vela X-1). The distance to the sources have been revised and also agree well with the estimations already available in the literature. In IGR J17544-2619 we are able to narrow the uncertainty to d = 3.0 ± 0.2 kpc. From the stellar radius of the donor and its X-ray behavior, the eccentricity of IGR J17544-2619 is constrained to e< 0.25. The derived chemical abundances point to certain mixing during the lifetime of the donors. An important difference between the stellar winds of the two stars is their terminal velocities (ν∞ = 1500 km s-1 in IGR J17544-2619 and ν∞ = 700 km s-1 in Vela X-1), which have important consequences on the X-ray luminosity of these sources. Conclusions. The donors of IGR J17544-2619 and Vela X-1 have similar spectral types as well as similar parameters that physically characterize them and their spectra. In addition, the orbital parameters of the systems are similar too, with a nearly circular orbit and short orbital period. However, they show moderate differences in their stellar wind velocity and the spin period of their neutron star which has a strong impact on the X-ray luminosity of the sources. This specific combination of wind speed and pulsar spin favors an accretion regime with a persistently high luminosity in Vela X-1, while it favors an inhibiting accretion mechanism in IGR J17544-2619. Our study demonstrates that the relative wind velocity is critical in class determination for the HMXBs hosting a supergiant donor, given that it may shift the accretion mechanism from direct accretion to propeller regimes when combined with other parameters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this work is to study the dynamic behavior of a pedestrian bridge in Alicante, Spain. It is a very slender footbridge with vertical and horizontal vibration problems during the passage of pedestrians. Accelerations have been recorded by accelerometers installed at various locations of the bridge. Two scenarios, in free vibration (after the passage of a certain number of pedestrians on the bridge) and forced vibration produced by a fixed number of pedestrians walking on the bridge at a certain speed and frequency. In each test, the effect on the comfort of the pedestrians, the natural frequencies of vibration, the mode shapes and damping factors have been estimated. It has been found that the acceleration levels are much higher than the allowable by the Spanish standards and this should be considered in the restoration of the footbridge.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The central oscillator of the cyanobacterial circadian clock is unique in the biochemical simplicity of its components and the robustness of the oscillation. The oscillator is composed of three cyanobacterial proteins: KaiA, KaiB, and KaiC. If very pure preparations of these three proteins are mixed in a test tube in the right proportions and with ATP and MgCl2, the phosphorylation states of KaiC will oscillate with a circadian period, and these states can be analyzed simply by SDS-PAGE. The purity of the proteins is critical for obtaining robust oscillation. Contaminating proteases will destroy oscillation by degradation of Kai proteins, and ATPases will attenuate robustness by consumption of ATP. Here, we provide a detailed protocol to obtain pure recombinant proteins from Escherichia coli to construct a robust cyanobacterial circadian oscillator in vitro. In addition, we present a protocol that facilitates analysis of phosphorylation states of KaiC and other phosphorylated proteins from in vivo samples.