3 resultados para idrossiapatite, cranioplastica, protesi, biomimetiche, microonde, DoE
em Universidad de Alicante
Resumo:
Gene homologs of GlnK PII regulators and AmtB-type ammonium transporters are often paired on prokaryotic genomes, suggesting these proteins share an ancient functional relationship. Here, we demonstrate for the first time in Archaea that GlnK associates with AmtB in membrane fractions after ammonium shock, thus, providing a further insight into GlnK-AmtB as an ancient nitrogen sensor pair. For this work, Haloferax mediterranei was advanced for study through the generation of a pyrE2-based counterselection system that was used for targeted gene deletion and expression of Flag-tagged proteins from their native promoters. AmtB1-Flag was detected in membrane fractions of cells grown on nitrate and was found to coimmunoprecipitate with GlnK after ammonium shock. Thus, in analogy to bacteria, the archaeal GlnK PII may block the AmtB1 ammonium transporter under nitrogen-rich conditions. In addition to this regulated protein–protein interaction, the archaeal amtB-glnK gene pairs were found to be highly regulated by nitrogen availability with transcript levels high under conditions of nitrogen limitation and low during nitrogen excess. While transcript levels of glnK-amtB are similarly regulated by nitrogen availability in bacteria, transcriptional regulators of the bacterial glnK promoter including activation by the two-component signal transduction proteins NtrC (GlnG, NRI) and NtrB (GlnL, NRII) and sigma factor σN (σ54) are not conserved in archaea suggesting a novel mechanism of transcriptional control.
Resumo:
Spin chains are among the simplest physical systems in which electron-electron interactions induce novel states of matter. Here we propose to combine atomic scale engineering and spectroscopic capabilities of state of the art scanning tunnel microscopy to probe the fractionalized edge states of individual atomic scale S=1 spin chains. These edge states arise from the topological order of the ground state in the Haldane phase. We also show that the Haldane gap and the spin-spin correlation length can be measured with the same technique.
Resumo:
Natural gas storage on porous materials (ANG) is a promising alternative to conventional on-board compressed (CNG) or liquefied natural gas (LNG). To date, Metal–organic framework (MOF) materials have apparently been the only system published in the literature that is able to reach the new Department of Energy (DOE) value of 263 cm3 (STP: 273.15 K, 1 atm)/cm3; however, this value was obtained by using the ideal single-crystal density to calculate the volumetric capacity. Here, we prove experimentally, and for the first time, that properly designed activated carbon materials can really achieve the new DOE value while avoiding the additional drawback usually associated with MOF materials (i.e., the low mechanical stability under pressure (conforming), which is required for any practical application).