3 resultados para hopping
em Universidad de Alicante
Resumo:
We study the electronic properties of electrons in flat and curved zigzag graphene nanoribbons using a tight-binding model within the Slater Koster approximation, including spin-orbit interaction. We find that a constant curvature across the ribbon dramatically enhances the action of the spin-orbit term, strongly influencing the spin orientation of the edge states: Whereas spins are normal to the surface in the case of flat ribbons, this is no longer the case for curved ribbons. This effect is very pronounced, the spins deviating from the normal to the ribbon, even for very small curvature and a realistic spin orbit coupling of carbon. We find that curvature results also in an effective second neighbor hopping that modifies the electronic properties of zigzag graphene ribbons. We discuss the implications of our findings in the spin Hall phase of curved graphene ribbons.
Resumo:
We study the effect of sublattice symmetry breaking on the electronic, magnetic, and transport properties of two-dimensional graphene as well as zigzag terminated one- and zero-dimensional graphene nanostructures. The systems are described with the Hubbard model within the collinear mean field approximation. We prove that for the noninteracting bipartite lattice with an unequal number of atoms in each sublattice, in-gap states still exist in the presence of a staggered on-site potential ±Δ/2. We compute the phase diagram of both 2D and 1D graphene with zigzag edges, at half filling, defined by the normalized interaction strength U/t and Δ/t, where t is the first neighbor hopping. In the case of 2D we find that the system is always insulating, and we find the Uc(Δ) curve above which the system goes antiferromagnetic. In 1D we find that the system undergoes a phase transition from nonmagnetic insulator for U
Resumo:
Detailed electronic structure calculations of picene clusters doped by potassium modeling the crystalline K3picene structure show that while two electrons are completely transferred from potassium atoms to the lowest-energy unoccupied molecular orbital of pristine picene, the third one remains closely attached to both material components. Multiconfigurational analysis is necessary to show that many structures of almost degenerate total energies compete to define the cluster ground state. Our results prove that the 4s orbital of potassium should be included in any interaction model describing the material. We propose a quarter-filled two-orbital model as the most simple model capable of describing the electronic structure of K-intercalated picene. Precise solutions obtained by a development of the Lanczos method show low-energy electronic excitations involving orbitals located at different positions. Consequently, metallic transport is possible in spite of the clear dominance of interaction over hopping.