2 resultados para hollow fiber membranes

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the filtration process and the biomass characteristics in a laboratory-scale submerged membrane bioreactor (MBR) equipped with a hollow fiber (HF) microfiltration membrane were studied at different solid retention times (SRT). The MBR was fed by synthetic wastewater and the organic loading rate (OLR) was 0.5, 0.2, 0.1, and 0.08 kg COD kg VSS−1 d−1 for 10, 30, 60, and 90 days of SRT, respectively. The hydraulic retention time was 8.4 h and the permeate flux was 6 L m−2 h−1(LMH). Data analysis confirmed that at all the studied SRTs, the HF-MBR operated very good obtaining of high quality permeates. Chemical Oxygen Demand (COD) removal efficiencies were higher than 95%. The best filtration performance was reached at SRT of 30 d. On the other hand, the respirometric analysis showed that biomass was more active and there was more biomass production at low SRTs. The concentration of soluble extracellular polymeric substances (EPS) decreased with increasing SRT. A decrease of soluble EPS caused a decrease of membrane fouling rate, decreasing the frequency of chemical cleanings. The floc size decreased with SRT increasing. At high SRTs, there was more friction among particles due to the increase of the cellular density and the flocs broke decreasing their size.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To study the possibility of producing better water quality from municipal wastewater, a membrane bioreactor (MBR) pilot plant with flat sheet (FS) and hollow fiber (HF) membranes coupled with another pilot plant equipped with nanofiltration (NF)/reverse osmosis (RO) membranes were operated to treat municipal wastewater from the wastewater treatment plant (WWTP) Rincón de León, Alicante (Spain). This study was focused on improving the quality of the permeate obtained from the MBR process when complemented by NF or RO stages with respect to salinity, organic matter and nutrients. Furthermore, the removal efficiencies of 10 EMPs were evaluated, comparing the reductions achieved between the wastewater treatment by MBR (adsorption to sludge and biodegradation) and the later treatment using NF or RO (mainly size exclusion). The results showed that the high quality of water was obtained which is appropriate for reuse with salinity removal efficiencies higher than 97%, 96% for total organic carbon (TOC), 91% for nitrates View the MathML sourceNO3- and 99% for total phosphorous (TP). High removal efficiencies were obtained for the majority of the analyzed EMP compounds.