2 resultados para high intensity zone
em Universidad de Alicante
Resumo:
Aerobic Gymnastic is the ability to perform complex movements produced by the traditional aerobic exercises, in a continuous manner, with high intensity, perfectly integrated with soundtracks. This sport is performed in an aerobic/anaerobic lactacid condition and expects the execution of complex movements produced by the traditional aerobic exercises integrated with difficulty elements performed with a high technical level. An inaccuracy about this sport is related to the name itself “aerobic” because Aerobic Gymnastic does not use just the aerobic work during the competition, due to the fact that the exercises last among 1’30” and 1’45” at high rhythm. Agonistic Aerobics exploit the basic movements of amateur Aerobics and its coordination schemes, even though the agonistic Aerobics is so much intense than the amateur Aerobics to need a completely different mix of energetic mechanisms. Due to the complexity and the speed with which you perform the technical elements of Aerobic Gymnastic, the introduction of video analysis is essential for a qualitative and quantitative evaluation of athletes’ performance during the training. The performance analysis can allow the accurate analysis and explanation of the evolution and dynamics of a historical phenomenon and motor sports. The notational analysis is used by technicians to have an objective analysis of performance. Tactics, technique and individual movements can be analyzed to help coaches and athletes to re-evaluate their performance and gain advantage during the competition. The purpose of the following experimental work will be a starting point for analyzing the performance of the athletes in an objective way, not only during competitions, but especially during the phases of training. It is, therefore, advisable to introduce the video analysis and notational analysis for more quantitative and qualitative examination of technical movements. The goal is to lead to an improvement of the technique of the athlete and the teaching of the coach.
Resumo:
High intensity ultrasound can be used for the production of novel nanomaterials, including metal oxides. According to previous works in this field, the most notable effects are consequence of acoustic cavitation. In this context, we have studied the preparation of different materials in the presence of ultrasound, including N-doped TiO2 nanopowder, NiTiO3 nanorods and MnOx thin films. Ultrasound did not show a significant effect in all the cases. Exclusively for NiTiO3 nanorods a reduction of the final particle size occurs upon ultrasonic irradiation. From these results, it can be concluded that the ultrasound irradiation does not always play a key role during the synthesis of metal oxides. The effects seem to be particularly relevant in those cases where mass transport is highly hindered and in those procedures that require the rupture of nanoparticle aggregates to obtain a homogenous dispersion.