6 resultados para hidden reserves

em Universidad de Alicante


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An electronic phase with coexisting magnetic and ferroelectric order is predicted for graphene ribbons with zigzag edges. The electronic structure of the system is described with a mean-field Hubbard model that yields results very similar to those of density functional calculations. Without further approximations, the mean-field theory is recasted in terms of a BCS wave function for electron-hole pairs in the edge bands. The BCS coherence present in each spin channel is related to spin-resolved electric polarization. Although the total electric polarization vanishes, due to an internal phase locking of the BCS state, strong magnetoelectric effects are expected in this system. The formulation naturally accounts for the two gaps in the quasiparticle spectrun, Δ0 and Δ1, and relates them to the intraband and interband self-energies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this paper is to present a system to communicate hidden information among different users by means of images. The tasks that the system is able to carry on can be divided in two different groups of utilities, implemented in java. The first group of utilities are related with the possibility to hide information in color images, using a steganographic function based on the least significant bit (LSB) methods. The second group of utilities allows us to communicate with other users with the aim to send or receive images, where some information have been previously embedded. Thus, this is the most significant characteristic of the implementation, we have built an environment where we join the email capabilities to send and receive text and images as attached files, with the main objective of hiding information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Central compact objects (CCOs) are X-ray sources lying close to the centre of supernova remnants, with inferred values of the surface magnetic fields significantly lower (≲1011 G) than those of standard pulsars. In this paper, we revise the hidden magnetic field scenario, presenting the first 2D simulations of the submergence and re-emergence of the magnetic field in the crust of a neutron star. A post-supernova accretion stage of about 10−4–10−3 M⊙ over a vast region of the surface is required to bury the magnetic field into the inner crust. When accretion stops, the field re-emerges on a typical time-scale of 1–100 kyr, depending on the submergence conditions. After this stage, the surface magnetic field is restored close to its birth values. A possible observable consequence of the hidden magnetic field is the anisotropy of the surface temperature distribution, in agreement with observations of several of these sources. We conclude that the hidden magnetic field model is viable as an alternative to the antimagnetar scenario, and it could provide the missing link between CCOs and the other classes of isolated neutron stars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The observation of several neutron stars in the centre of supernova remnants and with significantly lower values of the dipolar magnetic field than the average radio-pulsar population has motivated a lively debate about their formation and origin, with controversial interpretations. A possible explanation requires the slow rotation of the protoneutron star at birth, which is unable to amplify its magnetic field to typical pulsar levels. An alternative possibility, the hidden magnetic field scenario, considers the accretion of the fallback of the supernova debris on to the neutron star as responsible for the submergence (or screening) of the field and its apparently low value. In this paper, we study under which conditions the magnetic field of a neutron star can be buried into the crust due to an accreting, conducting fluid. For this purpose, we consider a spherically symmetric calculation in general relativity to estimate the balance between the incoming accretion flow and the magnetosphere. Our study analyses several models with different specific entropy, composition, and neutron star masses. The main conclusion of our work is that typical magnetic fields of a few times 1012 G can be buried by accreting only 10−3–10−2 M⊙, a relatively modest amount of mass. In view of this result, the central compact object scenario should not be considered unusual, and we predict that anomalously weak magnetic fields should be common in very young (< few kyr) neutron stars.