3 resultados para hematite powder
em Universidad de Alicante
Resumo:
This work reports the synthesis of nanoTiC–graphite composites using mesophase pitch containing titanium as TiC or TiO2 nanoparticles. NanoTiC–graphite composites have been prepared using Ti-doped self-sintering mesophase powders as starting materials without using any binders or a metal carbide-carbon mixing stage. The effect of manufacture variables on the graphite compacts properties was studied. Graphites were characterised using XRD and Raman spectroscopy, SEM and TEM, as well as by their mechanical, electrical and thermal properties. The presence of TiC promotes graphitisation producing materials with larger crystal sizes. The kind of titanium source and mesophase content of the starting pitch affects to the final properties. Mesophase pitch with higher amount of mesophase content produces graphites with higher degree of graphitisation. The incorporation of TiC nanoparticles to the graphites composites improved thermal conductivity more than four times, and mechanical properties are not significantly modified by the presence of TiC.
Resumo:
Inexpensive and commercially available nano-powder magnetite is an excellent catalyst for the addition of acid chlorides to internal and terminal alkynes, yielding the corresponding chlorovinyl ketones in good yields. The process has been applied to the synthesis of 5-chloro-4-arylcyclopent-2-enones, 3-aryl-1H-cyclopenta[a]naphthalen-1-ones, and (E)-3-alkylidene-2,3-dihydro-1H-cyclopenta[a]naphthalen-1-ones, just by changing the nature of the starting acid chloride or the alkyne. All tested processes elapse with an acceptable or excellent regio- and stereo-selectivity. Moreover, the use of the iridium impregnated on magnetite catalyst permits the integration of the chloroacylation process with a second dehydrochlorination–annulation process to yield, in one-pot, 1-aryl-2,4-dialkylfurans in good yields, independently of the nature of the starting reagents, and including the heteroaromatic ones.
Resumo:
The electronic properties of hematite were investigated by means of synchrotron radiation photoemission (SR-PES) and X-ray absorption spectroscopy (XAS). Hematite samples were exposed to trimethyl aluminum (TMA) pulses, a widely used Al-precursor for the atomic layer deposition (ALD) of Al2O3. SR-PES and XAS showed that the electronic properties of hematite were modified by the interaction with TMA. In particular, the hybridization of O 2p states with Fe 3d and Fe 4s4p changed upon TMA pulses due to electron inclusion as polarons. The change of hybridization correlates with an enhancement of the photocurrent density due to water oxidation for the hematite electrodes. Such an enhancement has been associated with an improvement in charge carrier transport. Our findings open new perspectives for the understanding and utilization of electrode modifications by very thin ALD films and show that the interactions between metal precursors and substrates seem to be important factors in defining their electronic and photoelectrocatalytic properties.