4 resultados para health department

em Universidad de Alicante


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Comunicación presentada en forma de póster en el "12th Mediterranean Congress of Chemical Engineering", Barcelona (Spain), November 15-18, 2011

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundamento. Evaluar en población general las fuentes de información, actitudes y predisposición hacia la vacunación contra la gripe pandémica A/H1N1 de 2009. Métodos. Estudio descriptivo de carácter transversal realizado entre el 25 de noviembre y 30 de diciembre de 2009 mediante entrevista personal cara a cara a una muestra aleatoria (826) de adultos residentes en el Departamento de Salud de Elche (España). Resultados. Los encuestados manifestaron que la televisión (57%) y el médico de familia (47,9%) eran su fuente principal de información sobre vacunas. El 82,2% tenía una buena opinión sobre las vacunas, un 30,5% percibía la gripe A/H1N1 como más grave que la estacional, siendo esta percepción creciente entre los de mayor edad y con menos estudios. Un 25,4% de encuestados sentía preocupación por padecerla, sobre todo los de menor nivel educativo. Un 42,1% manifiesta su buena predisposición para vacunarse contra la gripe estacional, disminuyendo hasta un 18,4% la intención hacia la gripe A/H1N1. La predisposición hacia la vacunación crece con la edad y en el caso de la gripe A/H1N1 decrece a mayor nivel educativo. El médico de familia es la fuente de información más determinante para inmunizarse frente a gripe estacional (OR 1,43) y gripe A/H1N1 (OR 2,47). Conclusiones. Existe baja aceptabilidad de la vacuna pandémica y baja percepción de gravedad sobre la gripe A/H1N1. La experiencia previa de vacunación ante gripe estacional predispone hacia la inmunización contra gripe A/H1N1. Aunque los medios de comunicación encabezan la fuente de información más usual durante este episodio, la influencia del médico de familia en la decisión de vacunarse resulta significativa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within the context of the health reforms introduced in Spain in the early 20th century and the influence of international health organisations on their development, this article analyses the growing interest that surrounded nourishment and food-related problems at that time in relation to healthcare, the diagnosis provided by hygienists of such problems, and the public health measures applied to resolve them. The issue of hygienic diet and the collective aspect of nutritional problems became priorities in the field of healthcare. Two of the most prominent initiatives involved setting up a Department of Nutrition and Food Hygiene and Bromatological Technique during the early years of the Second Republic, as part of the National School of Health, as well as a Food Hygiene Service. Spanish hygienists underlined the importance of education and the dissemination of information about food hygiene, health and nutrition, in order to overcome the qualitative and quantitative deficiencies observed in the average diet of the Spanish population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the chemical textile domain experts have to analyse chemical components and substances that might be harmful for their usage in clothing and textiles. Part of this analysis is performed searching opinions and reports people have expressed concerning these products in the Social Web. However, this type of information on the Internet is not as frequent for this domain as for others, so its detection and classification is difficult and time-consuming. Consequently, problems associated to the use of chemical substances in textiles may not be detected early enough, and could lead to health problems, such as allergies or burns. In this paper, we propose a framework able to detect, retrieve, and classify subjective sentences related to the chemical textile domain, that could be integrated into a wider health surveillance system. We also describe the creation of several datasets with opinions from this domain, the experiments performed using machine learning techniques and different lexical resources such as WordNet, and the evaluation focusing on the sentiment classification, and complaint detection (i.e., negativity). Despite the challenges involved in this domain, our approach obtains promising results with an F-score of 65% for polarity classification and 82% for complaint detection.