1 resultado para glottal closure
em Universidad de Alicante
Filtro por publicador
- Aberdeen University (3)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Archive of European Integration (10)
- Aston University Research Archive (7)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (69)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (109)
- Brock University, Canada (10)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CentAUR: Central Archive University of Reading - UK (111)
- Cochin University of Science & Technology (CUSAT), India (10)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (38)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (3)
- Digital Archives@Colby (2)
- Digital Commons at Florida International University (2)
- DigitalCommons@The Texas Medical Center (2)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (18)
- Duke University (1)
- Hospitais da Universidade de Coimbra (1)
- Institute of Public Health in Ireland, Ireland (5)
- Instituto Politécnico do Porto, Portugal (6)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (16)
- Massachusetts Institute of Technology (2)
- National Center for Biotechnology Information - NCBI (5)
- Nottingham eTheses (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositorio Academico Digital UANL (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (6)
- Repositório da Produção Científica e Intelectual da Unicamp (7)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (15)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (66)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (15)
- School of Medicine, Washington University, United States (2)
- Scielo Saúde Pública - SP (43)
- Scientific Open-access Literature Archive and Repository (2)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (2)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (20)
- Universidad Politécnica de Madrid (7)
- Universidade do Minho (5)
- Universidade Federal do Rio Grande do Norte (UFRN) (6)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (7)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (171)
- Université de Montréal, Canada (26)
- University of Connecticut - USA (1)
- University of Michigan (18)
- University of Queensland eSpace - Australia (58)
Resumo:
In this paper we provide the proof of a practical point-wise characterization of the set RP defined by the closure set of the real projections of the zeros of an exponential polynomial P(z) = Σn j=1 cjewjz with real frequencies wj linearly independent over the rationals. As a consequence, we give a complete description of the set RP and prove its invariance with respect to the moduli of the c′ js, which allows us to determine exactly the gaps of RP and the extremes of the critical interval of P(z) by solving inequations with positive real numbers. Finally, we analyse the converse of this result of invariance.