4 resultados para genotype media interaction

em Universidad de Alicante


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A combined chemometrics-metabolomics approach [excitation–emission matrix (EEM) fluorescence spectroscopy, nuclear magnetic resonance (NMR) and high performance liquid chromatography–mass spectrometry (HPLC–MS)] was used to analyse the rhizodeposition of the tritrophic system: tomato, the plant-parasitic nematode Meloidogyne javanica and the nematode-egg parasitic fungus Pochonia chlamydosporia. Exudates from M. javanica roots were sampled at root penetration (early) and gall development (late). EMM indicated that late root exudates from M. javanica treatments contained more aromatic amino acid compounds than the rest (control, P. chlamydosporia or P. chlamydosporia and M. javanica). 1H NMR showed that organic acids (acetate, lactate, malate, succinate and formic acid) and one unassigned aromatic compound (peak no. 22) were the most relevant metabolites in root exudates. Robust principal component analysis (PCA) grouped early exudates for nematode (PC1) or fungus presence (PC3). PCA found (PC1, 73.31 %) increased acetate and reduced lactate and an unassigned peak no. 22 characteristic of M. javanica root exudates resulting from nematode invasion and feeding. An increase of peak no. 22 (PC3, 4.82 %) characteristic of P. chlamydosporia exudates could be a plant “primer” defence. In late ones in PC3 (8.73 %) the presence of the nematode grouped the samples. HPLC–MS determined rhizosphere fingerprints of 16 (early) and 25 (late exudates) m/z signals, respectively. Late signals were exclusive from M. javanica exudates confirming EEM and 1H NMR results. A 235 m/z signal reduced in M. javanica root exudates (early and late) could be a repressed plant defense. This metabolomic approach and other rhizosphere -omics studies could help to improve plant growth and reduce nematode damage sustainably.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today's generation of Internet devices has changed how users are interacting with media, from passive and unidirectional users to proactive and interactive. Users can use these devices to comment or rate a TV show and search for related information regarding characters, facts or personalities. This phenomenon is known as second screen. This paper describes SAM, an EU-funded research project that focuses on developing an advanced digital media delivery platform based on second screen interaction and content syndication within a social media context, providing open and standardised ways of characterising, discovering and syndicating digital assets. This work provides an overview of the project and its main objectives, focusing on the NLP challenges to be faced and the technologies developed so far.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Social networking apps, sites and technologies offer a wide range of opportunities for businesses and developers to exploit the vast amount of information and user-generated content produced through social networking. In addition, the notion of second screen TV usage appears more influential than ever, with viewers continuously seeking further information and deeper engagement while watching their favourite movies or TV shows. In this work, the authors present SAM, an innovative platform that combines social media, content syndication and targets second screen usage to enhance media content provisioning, renovate the interaction with end-users and enrich their experience. SAM incorporates modern technologies and novel features in the areas of content management, dynamic social media, social mining, semantic annotation and multi-device representation to facilitate an advanced business environment for broadcasters, content and metadata providers, and editors to better exploit their assets and increase their revenues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

tRNAs are charged with cognate amino acids by aminoacyl-tRNA synthetases (aaRSs) and subsequently delivered to the ribosome to be used as substrates for gene translation. Whether aminoacyl-tRNAs are channeled to the ribosome by transit within translational complexes that avoid their diffusion in the cytoplasm is a matter of intense investigation in organisms of the three domains of life. In the cyanobacterium Anabaena sp. PCC 7120, the valyl-tRNA synthetase (ValRS) is anchored to thylakoid membranes by means of the CAAD domain. We have investigated whether in this organism ValRS could act as a hub for the nucleation of a translational complex by attracting other aaRSs to the membranes. Out of the 20 aaRSs, only ValRS was found to localize in thylakoid membranes whereas the other enzymes occupied the soluble portion of the cytoplasm. To investigate the basis for this asymmetric distribution of aaRSs, a global search for proteins interacting with the 20 aaRSs was conducted. The interaction between ValRS and the FoF1 ATP synthase complex here reported is of utmost interest and suggests a functional link between elements of the gene translation and energy production machineries.