4 resultados para force field analysis
em Universidad de Alicante
Resumo:
A united atom force field is empirically derived by minimizing the difference between experimental and simulated crystal cells and melting temperatures for eight compounds representative of organic electronic materials used in OLEDs and other devices: biphenyl, carbazole, fluorene, 9,9′-(1,3-phenylene)bis(9H-carbazole)-1,3-bis(N-carbazolyl)benzene (mCP), 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (pCBP), phenazine, phenylcarbazole, and triphenylamine. The force field is verified against dispersion-corrected DFT calculations and shown to also successfully reproduce the crystal structure for two larger compounds employed as hosts in phosphorescent and thermally activated delayed fluorescence OLEDs: N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPD), and 1,3,5-tri(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl (TPBI). The good performances of the force field coupled to the large computational savings granted by the united atom approximation make it an ideal choice for the simulation of the morphology of emissive layers for OLED materials in crystalline or glassy phases.
Resumo:
We have measured experimental adsorption isotherms of water in zeolite LTA4A, and studied the regeneration process by performing subsequent adsorption cycles after degassing at different temperatures. We observed incomplete desorption at low temperatures, and cation rearrangement at successive adsorption cycles. We also developed a new molecular simulation force field able to reproduce experimental adsorption isotherms in the range of temperatures between 273 K and 374 K. Small deviations observed at high pressures are attributed to the change in the water dipole moment at high loadings. The force field correctly describes the preferential adsorption sites of water at different pressures. We tested the influence of the zeolite structure, framework flexibility, and cation mobility when considering adsorption and diffusion of water. Finally, we performed checks on force field transferability between different hydrophilic zeolite types, concluding that classical, non-polarizable water force fields are not transferable.
Resumo:
Nowadays, the analysis of the X-ray spectra of magnetically powered neutron stars or magnetars is one of the most valuable tools to gain insight into the physical processes occurring in their interiors and magnetospheres. In particular, the magnetospheric plasma leaves a strong imprint on the observed X-ray spectrum by means of Compton up-scattering of the thermal radiation coming from the star surface. Motivated by the increased quality of the observational data, much theoretical work has been devoted to develop Monte Carlo (MC) codes that incorporate the effects of resonant Compton scattering (RCS) in the modeling of radiative transfer of photons through the magnetosphere. The two key ingredients in this simulations are the kinetic plasma properties and the magnetic field (MF) configuration. The MF geometry is expected to be complex, but up to now only mathematically simple solutions (self-similar solutions) have been employed. In this work, we discuss the effects of new, more realistic, MF geometries on synthetic spectra. We use new force-free solutions [14] in a previously developed MC code [9] to assess the influence of MF geometry on the emerging spectra. Our main result is that the shape of the final spectrum is mostly sensitive to uncertain parameters of the magnetospheric plasma, but the MF geometry plays an important role on the angle-dependence of the spectra.
Resumo:
We study the timing and spectral properties of the low-magnetic field, transient magnetar SWIFT J1822.3−1606 as it approached quiescence. We coherently phase-connect the observations over a time-span of ∼500 d since the discovery of SWIFT J1822.3−1606 following the Swift-Burst Alert Telescope (BAT) trigger on 2011 July 14, and carried out a detailed pulse phase spectroscopy along the outburst decay. We follow the spectral evolution of different pulse phase intervals and find a phase and energy-variable spectral feature, which we interpret as proton cyclotron resonant scattering of soft photon from currents circulating in a strong (≳1014 G) small-scale component of the magnetic field near the neutron star surface, superimposed to the much weaker (∼3 × 1013 G) magnetic field. We discuss also the implications of the pulse-resolved spectral analysis for the emission regions on the surface of the cooling magnetar.