10 resultados para finite-dimensional quantum systems

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The original motivation for this paper was to provide an efficient quantitative analysis of convex infinite (or semi-infinite) inequality systems whose decision variables run over general infinite-dimensional (resp. finite-dimensional) Banach spaces and that are indexed by an arbitrary fixed set J. Parameter perturbations on the right-hand side of the inequalities are required to be merely bounded, and thus the natural parameter space is l ∞(J). Our basic strategy consists of linearizing the parameterized convex system via splitting convex inequalities into linear ones by using the Fenchel–Legendre conjugate. This approach yields that arbitrary bounded right-hand side perturbations of the convex system turn on constant-by-blocks perturbations in the linearized system. Based on advanced variational analysis, we derive a precise formula for computing the exact Lipschitzian bound of the feasible solution map of block-perturbed linear systems, which involves only the system’s data, and then show that this exact bound agrees with the coderivative norm of the aforementioned mapping. In this way we extend to the convex setting the results of Cánovas et al. (SIAM J. Optim. 20, 1504–1526, 2009) developed for arbitrary perturbations with no block structure in the linear framework under the boundedness assumption on the system’s coefficients. The latter boundedness assumption is removed in this paper when the decision space is reflexive. The last section provides the aimed application to the convex case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, a new methodology is presented to obtain representation models for a priori relation z = u(x1, x2, . . . ,xn) (1), with a known an experimental dataset zi; x1i ; x2i ; x3i ; . . . ; xni i=1;2;...;p· In this methodology, a potential energy is initially defined over each possible model for the relationship (1), what allows the application of the Lagrangian mechanics to the derived system. The solution of the Euler–Lagrange in this system allows obtaining the optimal solution according to the minimal action principle. The defined Lagrangian, corresponds to a continuous medium, where a n-dimensional finite elements model has been applied, so it is possible to get a solution for the problem solving a compatible and determined linear symmetric equation system. The computational implementation of the methodology has resulted in an improvement in the process of get representation models obtained and published previously by the authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We address the optimization of discrete-continuous dynamic optimization problems using a disjunctive multistage modeling framework, with implicit discontinuities, which increases the problem complexity since the number of continuous phases and discrete events is not known a-priori. After setting a fixed alternative sequence of modes, we convert the infinite-dimensional continuous mixed-logic dynamic (MLDO) problem into a finite dimensional discretized GDP problem by orthogonal collocation on finite elements. We use the Logic-based Outer Approximation algorithm to fully exploit the structure of the GDP representation of the problem. This modelling framework is illustrated with an optimization problem with implicit discontinuities (diver problem).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The independent predictions of edge ferromagnetism and the quantum spin Hall phase in graphene have inspired the quest of other two-dimensional honeycomb systems, such as silicene, germanene, stanene, iridates, and organometallic lattices, as well as artificial superlattices, all of them with electronic properties analogous to those of graphene, but a larger spin-orbit coupling. Here, we study the interplay of ferromagnetic order and spin-orbit interactions at the zigzag edges of these graphenelike systems. We find an in-plane magnetic anisotropy that opens a gap in the otherwise conducting edge channels that should result in large changes of electronic properties upon rotation of the magnetization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spin–orbit coupling changes graphene, in principle, into a two-dimensional topological insulator, also known as quantum spin Hall insulator. One of the expected consequences is the existence of spin-filtered edge states that carry dissipationless spin currents and undergo no backscattering in the presence of non-magnetic disorder, leading to quantization of conductance. Whereas, due to the small size of spin–orbit coupling in graphene, the experimental observation of these remarkable predictions is unlikely, the theoretical understanding of these spin-filtered states is shedding light on the electronic properties of edge states in other two-dimensional quantum spin Hall insulators. Here we review the effect of a variety of perturbations, like curvature, disorder, edge reconstruction, edge crystallographic orientation, and Coulomb interactions on the electronic properties of these spin filtered states.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We show that a quasi-two dimensional condensate of optically active excitons emits coherent light even in the absence of population inversion. This allows an unambiguous and clear experimental detection of the condensed phase. We prove that, due to the exciton–photon coupling, quantum and thermal fluctuations do not destroy condensation at finite temperature. Suitable conditions to achieve condensation are temperatures of a few K for typical exciton densities and the use of a pulsed and preferably circularly polarized, laser.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work the usefulness of qualitatively studying and drawing three-dimensional temperature–composition diagrams for ternary systems is pointed out to understand and interpret the particular behavior of the liquid–vapour equilibrium of non-ideal ternary systems. Several examples have been used in order to highlight the interest and the possibilities of this tool, which should be an interesting support not only for lecturers, but also for researchers interested in experimental equilibrium data determination.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we deal with parameterized linear inequality systems in the n-dimensional Euclidean space, whose coefficients depend continuosly on an index ranging in a compact Hausdorff space. The paper is developed in two different parametric settings: the one of only right-hand-side perturbations of the linear system, and that in which both sides of the system can be perturbed. Appealing to the backgrounds on the calmness property, and exploiting the specifics of the current linear structure, we derive different characterizations of the calmness of the feasible set mapping, and provide an operative expresion for the calmness modulus when confined to finite systems. In the paper, the role played by the Abadie constraint qualification in relation to calmness is clarified, and illustrated by different examples. We point out that this approach has the virtue of tackling the calmness property exclusively in terms of the system’s data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We calculate the effect of spin waves on the properties of finite-size spin chains with a chiral spin ground state observed on biatomic Fe chains deposited on iridium(001). The system is described with a Heisenberg model supplemented with a Dzyaloshinskii-Moriya coupling and a uniaxial single ion anisotropy that presents a chiral spin ground state. Spin waves are studied using the Holstein-Primakoff boson representation of spin operators. Both the renormalized ground state and the elementary excitations are found by means of Bogoliubov transformation, as a function of the two variables that can be controlled experimentally, the applied magnetic field and the chain length. Three main results are found. First, because of the noncollinear nature of the classical ground state, there is a significant zero-point reduction of the ground-state magnetization of the spin spiral. Second, there is a critical external field from which the ground state changes from chiral spin ground state to collinear ferromagnetic order. The character of the two lowest-energy spin waves changes from edge modes to confined bulk modes over this critical field. Third, in the spin-spiral state, the spin-wave spectrum exhibits oscillatory behavior as function of the chain length with the same period of the spin helix.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Numerical modelling methodologies are important by their application to engineering and scientific problems, because there are processes where analytical mathematical expressions cannot be obtained to model them. When the only available information is a set of experimental values for the variables that determine the state of the system, the modelling problem is equivalent to determining the hyper-surface that best fits the data. This paper presents a methodology based on the Galerkin formulation of the finite elements method to obtain representations of relationships that are defined a priori, between a set of variables: y = z(x1, x2,...., xd). These representations are generated from the values of the variables in the experimental data. The approximation, piecewise, is an element of a Sobolev space and has derivatives defined in a general sense into this space. The using of this approach results in the need of inverting a linear system with a structure that allows a fast solver algorithm. The algorithm can be used in a variety of fields, being a multidisciplinary tool. The validity of the methodology is studied considering two real applications: a problem in hydrodynamics and a problem of engineering related to fluids, heat and transport in an energy generation plant. Also a test of the predictive capacity of the methodology is performed using a cross-validation method.