8 resultados para field strength
em Universidad de Alicante
Resumo:
Isolated neutron stars (NSs) show a bewildering variety of astrophysical manifestations, presumably shaped by the magnetic field strength and topology at birth. Here, using state-of-the-art calculations of the coupled magnetic and thermal evolution of NSs, we compute the thermal spectra and pulse profiles expected for a variety of initial magnetic field configurations. In particular, we contrast models with purely poloidal magnetic fields to models dominated by a strong internal toroidal component. We find that, while the former displays double-peaked profiles and very low pulsed fractions, in the latter, the anisotropy in the surface temperature produced by the toroidal field often results in a single pulse profile, with pulsed fractions that can exceed the 50–60 per cent level even for perfectly isotropic local emission. We further use our theoretical results to generate simulated ‘observed’ spectra, and show that blackbody (BB) fits result in inferred radii that can be significantly smaller than the actual NS radius, even as low as ∼1–2 km for old NSs with strong internal toroidal fields and a high absorption column density along their line of sight. We compute the size of the inferred BB radius for a few representative magnetic field configurations, NS ages and magnitudes of the column density. Our theoretical results are of direct relevance to the interpretation of X-ray observations of isolated NSs, as well as to the constraints on the equation of state of dense matter through radius measurements.
Resumo:
Over the past decade, the numerical modeling of the magnetic field evolution in astrophysical scenarios has become an increasingly important field. In the crystallized crust of neutron stars the evolution of the magnetic field is governed by the Hall induction equation. In this equation the relative contribution of the two terms (Hall term and Ohmic dissipation) varies depending on the local conditions of temperature and magnetic field strength. This results in the transition from the purely parabolic character of the equations to the hyperbolic regime as the magnetic Reynolds number increases, which presents severe numerical problems. Up to now, most attempts to study this problem were based on spectral methods, but they failed in representing the transition to large magnetic Reynolds numbers. We present a new code based on upwind finite differences techniques that can handle situations with arbitrary low magnetic diffusivity and it is suitable for studying the formation of sharp current sheets during the evolution. The code is thoroughly tested in different limits and used to illustrate the evolution of the crustal magnetic field in a neutron star in some representative cases. Our code, coupled to cooling codes, can be used to perform long-term simulations of the magneto-thermal evolution of neutron stars.
Resumo:
The discovery of very slow pulsations (Pspin =5560 s) has solved the long-standing question of the nature of the compact object in the high-mass X-ray binary 4U 2206+54 but has posed new ones. According to spin evolutionary models in close binary systems, such slow pulsations require a neutron star magnetic field strength larger than the quantum critical value of 4.4 × 1013 G, suggesting the presence of a magnetar. We present the first XMM–Newton observations of 4U 2206+54 and investigate its spin evolution. We find that the observed spin-down rate agrees with the magnetar scenario. We analyse Integral Spacecraft Gamma-Ray Imager (ISGRI)/INTErnational Gamma-RAy Laboratory (INTEGRAL) observations of 4U 2206+54 to search for the previously suggested cyclotron resonance scattering feature at ∼30 keV. We do not find a clear indication of the presence of the line, although certain spectra display shallow dips, not always at 30 keV. The association of these dips with a cyclotron line is very dubious because of its apparent transient nature. We also investigate the energy spectrum of 4U 2206+54 in the energy range 0.3–10 keV with unprecedented detail and report for the first time the detection of very weak 6.5 keV fluorescence iron lines. The photoelectric absorption is consistent with the interstellar value, indicating very small amount of local matter, which would explain the weakness of the florescence lines. The lack of matter locally to the source may be the consequence of the relatively large orbital separation of the two components of the binary. The wind would be too tenuous in the vicinity of the neutron star.
Resumo:
The thermal X-ray spectra of several isolated neutron stars display deviations from a pure blackbody. The accurate physical interpretation of these spectral features bears profound implications for our understanding of the atmospheric composition, magnetic field strength and topology, and equation of state of dense matter. With specific details varying from source to source, common explanations for the features have ranged from atomic transitions in the magnetized atmospheres or condensed surface, to cyclotron lines generated in a hot ionized layer near the surface. Here, we quantitatively evaluate the X-ray spectral distortions induced by inhomogeneous temperature distributions of the neutron star surface. To this aim, we explore several surface temperature distributions, we simulate their corresponding general relativistic X-ray spectra (assuming an isotropic, blackbody emission), and fit the latter with a single blackbody model. We find that, in some cases, the presence of a spurious ‘spectral line’ is required at a high significance level in order to obtain statistically acceptable fits, with central energy and equivalent width similar to the values typically observed. We also perform a fit to a specific object, RX J0806.4−4123, finding several surface temperature distributions able to model the observed spectrum. The explored effect is unlikely to work in all sources with detected lines, but in some cases it can indeed be responsible for the appearance of such lines. Our results enforce the idea that surface temperature anisotropy can be an important factor that should be considered and explored also in combination with more sophisticated emission models like atmospheres.
Resumo:
The magnetic field strength at birth is arguably one of the most important properties to determine the evolutionary path of a neutron star. Objects with very high fields, collectively known as magnetars, are characterized by high X-ray quiescent luminosities, occurrence of outbursts, and, for some of them, sporadic giant flares. While the magnetic field strength is believed to drive their collective behaviour, however, the diversity of their properties, and, especially, the observation of magnetar-like bursts from “low-field” pulsars, has been a theoretical puzzle. In this review, we discuss results of long-term simulations following the coupled evolution of the X-ray luminosity and the timing properties for a large, homogeneous sample of X-ray emitting isolated neutron stars, accounting for a range of initial magnetic field strengths, envelope compositions, and neutron star masses. In addition, by following the evolution of magnetic stresses within the neutron star crust, we can also relate the observed magnetar phenomenology to the physical properties of neutron stars, and in particular to their age and magnetic field strength and topology. The dichotomy of “high-B” field pulsars versus magnetars is naturally explained, and occasional outbursts from old, low B-field neutron stars are predicted. We conclude by speculating on the fate of old magnetars, and by presenting observational diagnostics of the neutron star crustal field topology.
Resumo:
High resolution X-ray spectroscopy is a powerful tool for studying the nature of the matter surrounding the neutron star in X-ray binaries and its interaction between the stellar wind and the compact object. In particular, absorption features in their spectra could reveal the presence of atmospheres of the neutron star or their magnetic field strength. Here we present an investigation of the absorption feature at 2.1 keV in the X-ray spectrum of the high mass X-ray binary 4U 1538–52 based on our previous analysis of the XMM-Newton data. We study various possible origins and discuss the different physical scenarios in order to explain this feature. A likely interpretation is that the feature is associated with atomic transitions in an O/Ne neutron star atmosphere or of hydrogen and helium like Fe or Si ions formed in the stellar wind of the donor.
Resumo:
We report on the discovery of a new member of the magnetar class, SGR J1935+2154, and on its timing and spectral properties measured by an extensive observational campaign carried out between 2014 July and 2015 March with Chandra and XMM–Newton (11 pointings). We discovered the spin period of SGR J1935+2154 through the detection of coherent pulsations at a period of about 3.24 s. The magnetar is slowing down at a rate of P˙=1.43(1)×10−11 s s−1 and with a decreasing trend due to a negative P¨ of −3.5(7) × 10−19 s s−2. This implies a surface dipolar magnetic field strength of ∼2.2 × 1014 G, a characteristic age of about 3.6 kyr and a spin-down luminosity Lsd ∼1.7 × 1034 erg s−1. The source spectrum is well modelled by a blackbody with temperature of about 500 eV plus a power-law component with photon index of about 2. The source showed a moderate long-term variability, with a flux decay of about 25 per cent during the first four months since its discovery, and a re-brightening of the same amount during the second four months. The X-ray data were also used to study the source environment. In particular, we discovered a diffuse emission extending on spatial scales from about 1 arcsec up to at least 1 arcmin around SGR J1935+2154 both in Chandra and XMM–Newton data. This component is constant in flux (at least within uncertainties) and its spectrum is well modelled by a power-law spectrum steeper than that of the pulsar. Though a scattering halo origin seems to be more probable we cannot exclude that part, or all, of the diffuse emission is due to a pulsar wind nebula.
Resumo:
Context. The rotational evolution of isolated neutron stars is dominated by the magnetic field anchored to the solid crust of the star. Assuming that the core field evolves on much longer timescales, the crustal field evolves mainly though Ohmic dissipation and the Hall drift, and it may be subject to relatively rapid changes with remarkable effects on the observed timing properties. Aims. We investigate whether changes of the magnetic field structure and strength during the star evolution may have observable consequences in the braking index n. This is the most sensitive quantity to reflect small variations of the timing properties that are caused by magnetic field rearrangements. Methods. We performed axisymmetric, long-term simulations of the magneto-thermal evolution of neutron stars with state-of-the-art microphysical inputs to calculate the evolution of the braking index. Relatively rapid magnetic field modifications can be expected only in the crust of neutron stars, where we focus our study. Results. We find that the effect of the magnetic field evolution on the braking index can be divided into three qualitatively different stages depending on the age and the internal temperature: a first stage that may be different for standard pulsars (with n ~ 3) or low field neutron stars that accreted fallback matter during the supernova explosion (systematically n < 3); in a second stage, the evolution is governed by almost pure Ohmic field decay, and a braking index n > 3 is expected; in the third stage, at late times, when the interior temperature has dropped to very low values, Hall oscillatory modes in the neutron star crust result in braking indices of a high absolute value and both positive and negative signs. Conclusions. Current magneto-thermal evolution models predict a large contribution to the timing noise and, in particular, to the braking index, from temporal variations of the magnetic field. Models with strong (≳ 1014 G) multipolar or toroidal components, even with a weak (~1012 G) dipolar field are consistent with the observed trend of the timing properties.