7 resultados para field methods
em Universidad de Alicante
Resumo:
Current model-driven Web Engineering approaches (such as OO-H, UWE or WebML) provide a set of methods and supporting tools for a systematic design and development of Web applications. Each method addresses different concerns using separate models (content, navigation, presentation, business logic, etc.), and provide model compilers that produce most of the logic and Web pages of the application from these models. However, these proposals also have some limitations, especially for exchanging models or representing further modeling concerns, such as architectural styles, technology independence, or distribution. A possible solution to these issues is provided by making model-driven Web Engineering proposals interoperate, being able to complement each other, and to exchange models between the different tools. MDWEnet is a recent initiative started by a small group of researchers working on model-driven Web Engineering (MDWE). Its goal is to improve current practices and tools for the model-driven development of Web applications for better interoperability. The proposal is based on the strengths of current model-driven Web Engineering methods, and the existing experience and knowledge in the field. This paper presents the background, motivation, scope, and objectives of MDWEnet. Furthermore, it reports on the MDWEnet results and achievements so far, and its future plan of actions.
Resumo:
Context. The rotational evolution of isolated neutron stars is dominated by the magnetic field anchored to the solid crust of the star. Assuming that the core field evolves on much longer timescales, the crustal field evolves mainly though Ohmic dissipation and the Hall drift, and it may be subject to relatively rapid changes with remarkable effects on the observed timing properties. Aims. We investigate whether changes of the magnetic field structure and strength during the star evolution may have observable consequences in the braking index n. This is the most sensitive quantity to reflect small variations of the timing properties that are caused by magnetic field rearrangements. Methods. We performed axisymmetric, long-term simulations of the magneto-thermal evolution of neutron stars with state-of-the-art microphysical inputs to calculate the evolution of the braking index. Relatively rapid magnetic field modifications can be expected only in the crust of neutron stars, where we focus our study. Results. We find that the effect of the magnetic field evolution on the braking index can be divided into three qualitatively different stages depending on the age and the internal temperature: a first stage that may be different for standard pulsars (with n ~ 3) or low field neutron stars that accreted fallback matter during the supernova explosion (systematically n < 3); in a second stage, the evolution is governed by almost pure Ohmic field decay, and a braking index n > 3 is expected; in the third stage, at late times, when the interior temperature has dropped to very low values, Hall oscillatory modes in the neutron star crust result in braking indices of a high absolute value and both positive and negative signs. Conclusions. Current magneto-thermal evolution models predict a large contribution to the timing noise and, in particular, to the braking index, from temporal variations of the magnetic field. Models with strong (≳ 1014 G) multipolar or toroidal components, even with a weak (~1012 G) dipolar field are consistent with the observed trend of the timing properties.
Resumo:
Recent years have witnessed a surge of interest in computational methods for affect, ranging from opinion mining, to subjectivity detection, to sentiment and emotion analysis. This article presents a brief overview of the latest trends in the field and describes the manner in which the articles contained in the special issue contribute to the advancement of the area. Finally, we comment on the current challenges and envisaged developments of the subjectivity and sentiment analysis fields, as well as their application to other Natural Language Processing tasks and related domains.
Resumo:
Purpose. To evaluate the usefulness of microperimetry in the early detection of the ocular anomalies associated with the use of hydroxychloroquine. Methods. Prospective comparative case series study comprising 14 healthy eyes of 7 patients (group A) and 14 eyes of 7 patients under treatment with hydroxychloroquine for the treatment of rheumatologic diseases and without fundoscopic or perimetric anomalies (group B). A comprehensive ophthalmological examination including microperimetry (MP) and spectraldomain optical coherence tomography was performed in both groups. Results. No significant differences were found in mean MP foveal sensitivity between groups (P = 0.18). However, mean MP overall sensitivity was significantly higher in group A (29.05 ± 0.57 dB versus group B, 26.05 ± 2.75 dB; P < 0.001). Significantly higher sensitivity values were obtained in group A in comparison to group B for the three eccentric loci evaluated (P < 0.001). Conclusion. Microperimetry seems to be a useful tool for the early detection of retinal damage in patients treated with hydroxychloroquine.
Resumo:
The study of long-term evolution of neutron star (NS) magnetic fields is key to understanding the rich diversity of NS observations, and to unifying their nature despite the different emission mechanisms and observed properties. Such studies in principle permit a deeper understanding of the most important parameters driving their apparent variety, e.g. radio pulsars, magnetars, X-ray dim isolated NSs, gamma-ray pulsars. We describe, for the first time, the results from self-consistent magnetothermal simulations considering not only the effects of the Hall-driven field dissipation in the crust, but also adding a complete set of proposed driving forces in a superconducting core. We emphasize how each of these core-field processes drive magnetic evolution and affect observables, and show that when all forces are considered together in vectorial form, the net expulsion of core magnetic flux is negligible, and will have no observable effect in the crust (consequently in the observed surface emission) on megayear time-scales. Our new simulations suggest that strong magnetic fields in NS cores (and the signatures on the NS surface) will persist long after the crustal magnetic field has evolved and decayed, due to the weak combined effects of dissipation and expulsion in the stellar core.
Resumo:
The aim of this article is to compare the Suzuki and BAPNE methods based on bibliography published for both approaches. In the field of musical and instrumental education and especially for the childhood stage, the correct use of the body and voice are of fundamental importance. These two methods differ from one another; one principally musical and instrumental, which is the Suzuki method, and one non-musical, the BAPNE method, which aims at stimulating attention, concentration, memory and the executing function of the pupil through music and body percussion. Comparing different approaches may provide teachers with a useful insight for facing different issues related to their discipline.
Resumo:
The purpose of this study is to analyze the existing literature on hospitality management from all the research papers published in The International Journal of Hospitality Management (IJHM) between 2008 and 2014. The authors apply bibliometric methods – in particular, author citation and co-citation analyses (ACA) – to identify the main research lines within this scientific field; in other words, its ‘intellectual structure’. Social network analysis (SNA) is also used to perform a visualization of this structure. The results of the analysis allow us to define the different research lines or fronts which shape the intellectual structure of research on hospitality management.