3 resultados para extension language
em Universidad de Alicante
Resumo:
The extension to new languages is a well known bottleneck for rule-based systems. Considerable human effort, which typically consists in re-writing from scratch huge amounts of rules, is in fact required to transfer the knowledge available to the system from one language to a new one. Provided sufficient annotated data, machine learning algorithms allow to minimize the costs of such knowledge transfer but, up to date, proved to be ineffective for some specific tasks. Among these, the recognition and normalization of temporal expressions still remains out of their reach. Focusing on this task, and still adhering to the rule-based framework, this paper presents a bunch of experiments on the automatic porting to Italian of a system originally developed for Spanish. Different automatic rule translation strategies are evaluated and discussed, providing a comprehensive overview of the challenge.
Resumo:
This paper presents the automatic extension to other languages of TERSEO, a knowledge-based system for the recognition and normalization of temporal expressions originally developed for Spanish. TERSEO was first extended to English through the automatic translation of the temporal expressions. Then, an improved porting process was applied to Italian, where the automatic translation of the temporal expressions from English and from Spanish was combined with the extraction of new expressions from an Italian annotated corpus. Experimental results demonstrate how, while still adhering to the rule-based paradigm, the development of automatic rule translation procedures allowed us to minimize the effort required for porting to new languages. Relying on such procedures, and without any manual effort or previous knowledge of the target language, TERSEO recognizes and normalizes temporal expressions in Italian with good results (72% precision and 83% recall for recognition).
Resumo:
If one has a distribution of words (SLUNs or CLUNS) in a text written in language L(MT), and is adjusted one of the mathematical expressions of distribution that exists in the mathematical literature, some parameter of the elected expression it can be considered as a measure of the diversity. But because the adjustment is not always perfect as usual measure; it is preferable to select an index that doesn't postulate a regularity of distribution expressible for a simple formula. The problem can be approachable statistically, without having special interest for the organization of the text. It can serve as index any monotonous function that has a minimum value when all their elements belong to the same class, that is to say, all the individuals belong to oneself symbol, and a maximum value when each element belongs to a different class, that is to say, each individual is of a different symbol. It should also gather certain conditions like they are: to be not very sensitive to the extension of the text and being invariant to certain number of operations of selection in the text. These operations can be theoretically random. The expressions that offer more advantages are those coming from the theory of the information of Shannon-Weaver. Based on them, the authors develop a theoretical study for indexes of diversity to be applied in texts built in modeling language L(MT), although anything impedes that they can be applied to texts written in natural languages.