15 resultados para ethanol steam reforming

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, the steam reforming of biofuels has been presented as a potential hydrogen source for fuel cells. Because this scenario represents an interesting opportunity for Colombia (South America), which produces large amounts of bioethanol, the steam reforming of ethanol was studied over a bimetallic RhPt/La2O3 catalyst under bulk mass transfer conditions. The effect of temperature and the initial concentrations of ethanol and water were evaluated at space velocities above 55,000 h−1 to determine the conditions that maximize the H2/CO ratio and reduce CH4 production while maintaining 100% conversion of ethanol. These requirements were accomplished when 21 mol% H2O and 3 mol% C2H5OH (steam/ethanol molar ratio = 7) were reacted at 600 °C. The catalyst stability was assessed under these reaction conditions during 120 h on stream, obtaining ethanol conversions above 99% during the entire test. The effect of both H2 and air flows as catalyst regeneration treatments were evaluated after 44 and 67 h on stream, respectively. The results showed that H2 treatment accelerated catalyst deactivation, and air regeneration increased both the catalyst stability and the H2 selectivity while decreasing CH4 generation. Fresh and spent catalyst samples were characterized by TEM/EDX, XPS, TPR, and TGA. Although the Rh and Pt in the fresh catalyst were completely reduced, the spent samples showed a partial oxidation of Rh and small amounts of carbonaceous residue. A possible Rh–Pt–Rh2O3 structure was proposed as the active site on the catalyst, which was regenerated by air treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CeO2-, ZrO2-, and La2O3-supported Rh-Pt catalysts were tested to assess their ability to catalyze the steam reforming of ethanol (SRE) for H2 production. SRE activity tests were performed using EtOH:H2O:N2 (molar ratio 1:3:51) at a gaseous space velocity of 70,600 h−1 between 400 and 700 °C at atmospheric pressure. The SRE stability of the catalysts was tested at 700 °C for 27 h time on stream under the same conditions. RhPt/CeO2, which showed the best performance in the stability test, also produced the highest H2 yield above 600 °C, followed by RhPt/La2O3 and RhPt/ZrO2. The fresh and aged catalysts were characterized by TEM, XPS, and TGA. The higher H2 selectivity of RhPt/CeO2 was ascribed to the formation of small (~5 nm) and stable particles probably consistent of Rh-Pt alloys with a Pt surface enrichment. Both metals were oxidized and acted as an almost constant active phase during the stability test owing to strong metal-support interactions, as well as the superior oxygen mobility of the support. The TGA results confirmed the absence of carbonaceous residues in all the aged catalysts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A detailed study on the preparation of bimetallic PtSn/C catalysts using surface-controlled synthesis methods, and on their catalytic performance in the glycerol steam reforming reaction has been carried out. In order to obtain these well-defined bimetallic phases, techniques derived from Surface Organometallic Chemistry on Metals (SOMC/M) were used. The preparation process involved the reaction between an organometallic compound ((C4H9)4Sn) and a supported transition metal (Pt) in a H2 atmosphere. Catalysts with Sn/Pt atomic ratios of 0.2, 0.3, 0.5, and 0.7 were obtained, and characterized using several techniques: ICP, H2 chemisorption, TEM and XPS. These systems were tested in the glycerol steam reforming varying the reaction conditions (glycerol concentration and reaction temperature). The best performance was observed for the catalysts with the lowest tin contents (PtSn0.2/C and PtSn0.3/C). It was observed that the presence of tin increased the catalysts’ stability when working under more severe reaction conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low metal content Co and Ni alumina supported catalysts (4.0, 2.5 and 1.0 wt% nominal metal content) have been prepared, characterized (by ICP-OES, TEM, TPR-H2 and TPO) and tested for the CO2 reforming of methane. The objective is to optimize the metal loading in order to have a more efficient system. The selected reaction temperature is 973 K, although some tests at higher reaction temperature have been also performed. The results show that the amount of deposited carbon is noticeably lower than that obtained with the Co and Ni reference catalysts (9 wt%), but the CH4 and CO2 conversions are also lower. Among the catalysts tested, the Co(1) catalyst (the value in brackets corresponds to the nominal wt% loading) is deactivated during the first minutes of reaction because CoAl2O4 is formed, while Ni(1) and Co(2.5) catalysts show a high specific activity for methane conversion, a high stability and a very low carbon deposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethanol adsorption on different activated carbons (mostly spherical ones) was investigated covering the relative pressure range from 0.001 to 1. Oxygen surface contents of the ACs were modified by oxidation (in HNO3 solution or air) and/or by thermal treatment in N2. To differentiate the concomitant effects of porosity and oxygen surface chemistry on ethanol adsorption, different sets of samples were used to analyze different relative pressure ranges (below 1000 ppmv concentration and close to unity). To see the effect of oxygen surface chemistry, selected samples having similar porosity but different oxygen contents were studied in the low relative pressure range. At low ethanol concentration (225 ppmv) adsorption is favored in oxidized samples, remarking the effect of the oxidizing treatment used (HNO3 is more effective than air) and the type of oxygen functionalities created (carboxyl and anhydride groups are more effective than phenolic, carbonyl and derivatives). To analyze the high relative pressure range, spherical and additional ACs were used. As the relative pressure of ethanol increases, the effect of oxygen-containing surface groups decreases and microporosity becomes the most important variable affecting the adsorption of ethanol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, a very detailed study of the reforming of syngas produced in the decomposition of Posidonia oceanica is done. The effect of the presence of different amounts of dolomite is analyzed. Also pyrolysis is studied, in nitrogen atmosphere, and gasification in the presence of air, oxygen and different amounts of steam. A detailed discussion on formation and destruction of tars is done. Furthermore, the effect of the heating rate in the decomposition and the residence time of the evolved gases are discussed. Syngas with ratio H2/CO from 0.3 to ca. 3 can be obtained from this interesting material. Marine species (microalgae) are usually studied with the aim of cultivating them for gas or oil production, but in this paper we draw attention to the possibility of using a natural resource with a very small impact in the ecosystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of metal loading and support surface functional groups (SFG) on methane dry reforming (MDR) over Ni catalysts supported on pine-sawdust derived activated carbon were studied. Using pine sawdust as the catalyst support precursor, the smallest variety and lowest concentration of SFG led to best Ni dispersion and highest catalytic activity, which increased with Ni loading up to 3 Ni atoms nm-2. At higher Ni loading, the formation of large metal aggregates was observed, consistent with a lower "apparen" surface area and a decrease in catalytic activity. The H2/CO ratio rose with increasing reaction temperature, indicating that increasingly important side reactions were taking place in addition to MDR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen del póster presentado en Symposium on Renewable Energy and Products from Biomass and Waste, CIUDEN (Cubillos de Sil, León, Spain), 12-13 May 2015

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Local changes of the interfacial pH can significantly affect the rate and mechanism during the course of an electrodic reaction. For instance, different pH values will have a significant effect on the equilibrium properties of both solution and surface species, altering the reactions kinetics. Ethanol oxidation at platinum electrodes in alkaline media involves the fast consumption of OH− species that will change the local pH at the electrode surface, decreasing the reaction rate. In this study, the local pH change during ethanol oxidation in alkaline media is accomplished by using rotating ring-disc electrode (RRDE) experiments. The current at the ring when polarized at the onset of hydrogen evolution serves as a measure of the local pH in the vicinity of the electrode. The results show that the current at the ring at 0.1 V (vs. RHE) becomes more negative during ethanol oxidation, owing to a change in the equilibrium potential of the hydrogen evolution reaction caused by a change in the local pH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We establish experimentally and through simulations the economic and technical viability of dehydrating ethanol by means of azeotropic distillation, using a hydrocarbon as entrainer. The purpose of this is to manufacture a ready-to-use ethanol–hydrocarbon fuel blend. In order to demonstrate the feasibility of this proposition, we have tested an azeotropic water–ethanol feed mixture, using a hydrocarbon as entrainer, in a semi pilot-plant scale distillation column. Four different hydrocarbons (hexane, cyclohexane, isooctane, and toluene) that are representative of the hydrocarbons present in ordinary gasoline have been tested. Each of these hydrocarbons was tested separately in experiments under conditions of constant feed rate and variable reboiler heat duty. The experimentally obtained results are compared with results calculated by a simulator. Finally, the proposed and traditional ethanol dehydration processes are compared to ascertain the advantages of the former over the latter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liquid–liquid (L–L), solid–liquid (S–L), and solid–liquid–liquid (S–L–L) equilibrium data for the water–ethanol–1-undecanol ternary system have been determined experimentally at (275.15, 278.15, 281.15, 288.15, and 298.15) K and atmospheric pressure. Different shapes of the equilibrium diagrams have been observed depending on the temperature. A region with three phases (S–L–L) is present in the temperature range between (275.15 and 281.15) K. Above 288.15 K, only a L–L region is observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work authors present the experimental liquid–liquid equilibria (LLE) data of water + ethanol + 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([bmim][Tf2N]) system at different temperatures. The LLE of the system was obtained in the temperature range from 283.2 to 323.2 K. The nonrandom two liquid (NRTL) and universal quasichemical (UNIQUAC) models were used to correlate ternary systems. The equilibrium compositions were successfully correlated by the interaction parameters from both models, however UNIQUAC gave a more accurate correlation. Finally, a study about the solvent capability of ionic liquid was made in order to evaluate the possibility of separating the mixture formed by ethanol and water using that ionic liquid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various hydrocarbons (n-hexane, cyclohexane, toluene, isooctane) and mixtures of them (binary, ternary or quaternary), as well as two different types of industrially produced naphtha (one obtained by direct distillation and the other from a catalytic cracking process), have been tested as candidate entrainers to dehydrate ethanol. The tests were carried out in an azeotropic distillation column on a semi pilot plant. The results show that it is possible to dehydrate bioethanol using naphtha as entrainer, obtaining as a result a fuel blend with negligible water content and ready for immediate use in motor vehicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxidation of ethanol (EtOH) at Pt(111) electrodes is dominated by the 4e path leading to acetic acid. The inclusion of surface defects such as those present on stepped surfaces leads to an increase of the reactivity towards the most desirable 12e path leading to CO2 as final product. This path is also favored when the methyl group is more oxidized, as in the case of ethylene glycol (EG) that spontaneously decomposes to CO on Pt(111) electrodes, thus showing a more effective breaking of the C-C bond. Some trends in reactivity can be envisaged when other derivative molecules are compared at well-ordered electrodes. This strategy was used in the past, but the improvement in the electrode pretreatment and the overall information available on the subject suggest that relevant information is still missing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a combination of experimental and computational methods, mainly FTIR and DFT calculations, new insights are provided here in order to better understand the cleavage of the C–C bond taking place during the complete oxidation of ethanol on platinum stepped surfaces. First, new experimental results pointing out that platinum stepped surfaces having (111) terraces promote the C–C bond breaking are presented. Second, it is computationally shown that the special adsorption properties of the atoms in the step are able to promote the C–C scission, provided that no other adsorbed species are present on the step, which is in agreement with the experimental results. In comparison with the (111) terrace, the cleavage of the C–C bond on the step has a significantly lower activation energy, which would provide an explanation for the observed experimental results. Finally, reactivity differences under acidic and alkaline conditions are discussed using the new experimental and theoretical evidence.