4 resultados para ethanol cross-over

em Universidad de Alicante


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Static stretching prior to sport has been shown to decrease force production in comparison to the increasing popularity of dynamic warm-up methods. However some athletes continue to use a bout of static stretching following dynamic methods. The purpose of this study was to investigate the effects on speed, agility and power following a period of additional static stretching following a dynamic warm-up routine. Twenty-five male University students who participated in team sports performed two warm-up protocols concentrating on the lower body one week apart through a randomised cross over design. The dynamic warm-up (DW) protocol used a series of specific progressive exercises lasting 10 minutes over a distance of 20m. The dynamic warm-up plus static stretching (DWS) protocol used the same DW protocol followed by a 5 minute period during which 7 muscle groups were stretched. Following each warm-up the subjects performed a countermovement vertical jump, 20m sprint and Illinois agility test, 1 minute apart. The results demonstrated no significant differences in speed, agility and jump performance following the two protocols DW and DWS. The study concludes that performing static stretching following a dynamic warm-up prior to performance does not significantly affect speed, agility and vertical jump performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recently, the steam reforming of biofuels has been presented as a potential hydrogen source for fuel cells. Because this scenario represents an interesting opportunity for Colombia (South America), which produces large amounts of bioethanol, the steam reforming of ethanol was studied over a bimetallic RhPt/La2O3 catalyst under bulk mass transfer conditions. The effect of temperature and the initial concentrations of ethanol and water were evaluated at space velocities above 55,000 h−1 to determine the conditions that maximize the H2/CO ratio and reduce CH4 production while maintaining 100% conversion of ethanol. These requirements were accomplished when 21 mol% H2O and 3 mol% C2H5OH (steam/ethanol molar ratio = 7) were reacted at 600 °C. The catalyst stability was assessed under these reaction conditions during 120 h on stream, obtaining ethanol conversions above 99% during the entire test. The effect of both H2 and air flows as catalyst regeneration treatments were evaluated after 44 and 67 h on stream, respectively. The results showed that H2 treatment accelerated catalyst deactivation, and air regeneration increased both the catalyst stability and the H2 selectivity while decreasing CH4 generation. Fresh and spent catalyst samples were characterized by TEM/EDX, XPS, TPR, and TGA. Although the Rh and Pt in the fresh catalyst were completely reduced, the spent samples showed a partial oxidation of Rh and small amounts of carbonaceous residue. A possible Rh–Pt–Rh2O3 structure was proposed as the active site on the catalyst, which was regenerated by air treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Absorption induced by electrochemically injected holes is studied in poly-9,9-dioctylfluorene (PFO) films. Injected charges form positive polarons which are delocalised over four fluorene units in the glassy phase and about seven fluorene units in its β-phase. Polaron absorption cross-sections at the 640 nm peak are similar to the published values of chemically reduced oligofluorenes in solution. The absorption cross-section of polaron in the β-phase at 470 nm is about eight times smaller than the stimulated emission cross-section derived from published data. This indicates that β-phase-rich PFO is an attractive candidate for a light-emitting layer in double-heterostructure organic laser diodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We establish experimentally and through simulations the economic and technical viability of dehydrating ethanol by means of azeotropic distillation, using a hydrocarbon as entrainer. The purpose of this is to manufacture a ready-to-use ethanol–hydrocarbon fuel blend. In order to demonstrate the feasibility of this proposition, we have tested an azeotropic water–ethanol feed mixture, using a hydrocarbon as entrainer, in a semi pilot-plant scale distillation column. Four different hydrocarbons (hexane, cyclohexane, isooctane, and toluene) that are representative of the hydrocarbons present in ordinary gasoline have been tested. Each of these hydrocarbons was tested separately in experiments under conditions of constant feed rate and variable reboiler heat duty. The experimentally obtained results are compared with results calculated by a simulator. Finally, the proposed and traditional ethanol dehydration processes are compared to ascertain the advantages of the former over the latter.