3 resultados para energy structure
em Universidad de Alicante
Resumo:
The appearance of ferromagnetic correlations among π electrons of phenanthrene (C14H10) molecules in the herringbone structure is proven for K doped clusters both by ab initio quantum-chemistry calculations and by the direct solution of the many-body Pariser-Parr-Pople Hamiltonian. Magnetic ground states are predicted for one or three additional electrons per phenanthrene molecule. These results are a consequence of the small overlap between the lowest unoccupied molecular orbitals (and lowest unoccupied molecular orbitals + 1) of neutral neighboring phenanthrene molecules, which makes the gain in energy by delocalization similar to the corresponding increase due to the Coulomb interaction.
Resumo:
To obtain insights into archaeal nitrogen signaling and haloadaptation of the nitrogen/carbon/energy-signaling protein PII, we determined crystal structures of recombinantly produced GlnK2 from the extreme halophilic archaeon Haloferax mediterranei, complexed with AMP or with the PII effectors ADP or ATP, at respective resolutions of 1.49 Å, 1.45 Å, and 2.60 Å. A unique trait of these structures was a three-tongued crown protruding from the trimer body convex side, formed by an 11-residue, N-terminal, highly acidic extension that is absent from structurally studied PII proteins. This extension substantially contributed to the very low pI value, which is a haloadaptive trait of H. mediterranei GlnK2, and participated in hexamer-forming contacts in one crystal. Similar acidic N-extensions are shown here to be common among PII proteins from halophilic organisms. Additional haloadaptive traits prominently represented in H. mediterranei GlnK2 are a very high ratio of small residues to large hydrophobic aliphatic residues, and the highest ratio of polar to nonpolar exposed surface for any structurally characterized PII protein. The presence of a dense hydration layer in the region between the three T-loops might also be a haloadaptation. Other unique findings revealed by the GlnK2 structure that might have functional relevance are: the adoption by its T-loop of a three-turn α-helical conformation, perhaps related to the ability of GlnK2 to directly interact with glutamine synthetase; and the firm binding of AMP, confirmed by biochemical binding studies with ATP, ADP, and AMP, raising the possibility that AMP could be an important PII effector, at least in archaea.
Resumo:
Multimetallic shape-controlled nanoparticles offer great opportunities to tune the activity, selectivity, and stability of electrocatalytic surface reactions. However, in many cases, our synthetic control over particle size, composition, and shape is limited requiring trial and error. Deeper atomic-scale insight in the particle formation process would enable more rational syntheses. Here we exemplify this using a family of trimetallic PtNiCo nanooctahedra obtained via a low-temperature, surfactant-free solvothermal synthesis. We analyze the competition between Ni and Co precursors under coreduction “one-step” conditions when the Ni reduction rates prevailed. To tune the Co reduction rate and final content, we develop a “two-step” route and track the evolution of the composition and morphology of the particles at the atomic scale. To achieve this, scanning transmission electron microscopy and energy dispersive X-ray elemental mapping techniques are used. We provide evidence of a heterogeneous element distribution caused by element-specific anisotropic growth and create octahedral nanoparticles with tailored atomic composition like Pt1.5M, PtM, and PtM1.5 (M = Ni + Co). These trimetallic electrocatalysts have been tested toward the oxygen reduction reaction (ORR), showing a greatly enhanced mass activity related to commercial Pt/C and less activity loss than binary PtNi and PtCo after 4000 potential cycles.