4 resultados para energy efficiency measurement place
em Universidad de Alicante
Resumo:
Of all the costs associated with the operation and maintenance of wastewater treatment plants (WWTPs), those associated with energy use tend to be the most significant. From this point of view, it is hence logical that energy efficiency and saving strategies should be one of the current focuses of debate amongst those involved with the management of WWTPs. The present study's objective is to determine the correlation between size and energy consumption for a WWTP. To this end, 90 WWTPs currently in service were analysed and their energetic impact quantified in terms of kWh/m3 of water treated. The results obtained demonstrate that energy consumption ratio increases as the size of WWTPs decreases, either in terms of treatment volume or population equivalent served.
Resumo:
We have studied the radial dependence of the energy deposition of the secondary electron generated by swift proton beams incident with energies T = 50 keV–5 MeV on poly(methylmethacrylate) (PMMA). Two different approaches have been used to model the electronic excitation spectrum of PMMA through its energy loss function (ELF), namely the extended-Drude ELF and the Mermin ELF. The singly differential cross section and the total cross section for ionization, as well as the average energy of the generated secondary electrons, show sizeable differences at T ⩽ 0.1 MeV when evaluated with these two ELF models. In order to know the radial distribution around the proton track of the energy deposited by the cascade of secondary electrons, a simulation has been performed that follows the motion of the electrons through the target taking into account both the inelastic interactions (via electronic ionizations and excitations as well as electron-phonon and electron trapping by polaron creation) and the elastic interactions. The radial distribution of the energy deposited by the secondary electrons around the proton track shows notable differences between the simulations performed with the extended-Drude ELF or the Mermin ELF, being the former more spread out (and, therefore, less peaked) than the latter. The highest intensity and sharpness of the deposited energy distributions takes place for proton beams incident with T ~ 0.1–1 MeV. We have also studied the influence in the radial distribution of deposited energy of using a full energy distribution of secondary electrons generated by proton impact or using a single value (namely, the average value of the distribution); our results show that differences between both simulations become important for proton energies larger than ~0.1 MeV. The results presented in this work have potential applications in materials science, as well as hadron therapy (due to the use of PMMA as a tissue phantom) in order to properly consider the generation of electrons by proton beams and their subsequent transport and energy deposition through the target in nanometric scales.
Resumo:
The main objectives of this research are (i) to determine the correct use of infrared thermography in the energy analysis of buildings and to verify its application in conducting energy audits thereof; (ii) to conduct a proposal for a standard methodology (with its corresponding final report) for energy audit of buildings based on currently applicable regulations, specifying the parts of the audit process where the authors propose to include thermal inspections by using infrared thermography.
Resumo:
Information technologies (IT) currently represent 2% of CO2 emissions. In recent years, a wide variety of IT solutions have been proposed, focused on increasing the energy efficiency of network data centers. Monitoring is one of the fundamental pillars of these systems, providing the information necessary for adequate decision making. However, today’s monitoring systems (MSs) are partial, specific and highly coupled solutions. This study proposes a model for monitoring data centers that serves as a basis for energy saving systems, offered as a value-added service embedded in a device with low cost and power consumption. The proposal is general in nature, comprehensive, scalable and focused on heterogeneous environments, and it allows quick adaptation to the needs of changing and dynamic environments. Further, a prototype of the system has been implemented in several devices, which has allowed validation of the proposal in addition to identification of the minimum hardware profile required to support the model.