2 resultados para electronic coupling

em Universidad de Alicante


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We theoretically describe in this work the n-type semiconducting behavior of a set of bis(arylene-ethynylene)-s-tetrazines ((ArCC)2Tz), by comparing their electronic properties with those of their parent diaryl-s-tetrazines (Ar2Tz) after the introduction of ethynylene bridges. The significantly reduced internal reorganization energy for electron transfer is ascribed to an extended delocalization of the LUMO for (ArCC)2Tz as opposite to that for Ar2Tz, which was described mostly localized on the s-tetrazine ring. The largest electronic coupling and the corresponding electron transfer rates found for bis(phenyl-ethynylene)-s-tetrazine, as well as for some halogenated derivatives, are comparable to those reported for the best performing n-type organic semiconductor materials such as diimides and perylenes. The theoretical mobilities for the studied compounds turn out to be in the range 0.3–1.3 cm2 V–1 s–1, close to values experimentally determined for common n-type organic semiconductors used in real devices. In addition, ohmic contacts can be expected when these compounds are coupled to metallic cathodes such as Na, Ca, and Sm. For these reasons, the future application of semiconducting bis(phenyl-ethynylene)-s-tetrazine and its fluorinated and brominated derivatives in optoelectronic devices is envisioned.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the electronic structure of gated graphene sheets. We consider both infinite graphene and finite width ribbons. The effect of Coulomb interactions between the electrically injected carriers and the coupling to the external gate are computed self-consistently in the Hartree approximation. We compute the average density of extra carriers n2D, the number of occupied subbands, and the density profiles as a function of the gate potential Vg. We discuss quantum corrections to the classical capacitance and we calculate the threshold Vg above which semiconducting armchair ribbons conduct. We find that the ideal conductance of perfectly transmitting wide ribbons is proportional to the square root of the gate voltage.