6 resultados para ecological box-model
em Universidad de Alicante
Resumo:
Understanding the ecology of migratory birds during the non-breeding season is necessary for ensuring their conservation. Using satellite telemetry data we describe winter ranging behaviour and movements of pallid harriers Circus macrourus that bred in Kazakhstan. We developed an ecological niche model for the species in Africa, to identify the most suitable wintering areas for pallid harriers and the importance of habitat in determining the location of those areas. We also assessed how well represented suitable areas are in the network of protected areas. Individual harriers showed relatively high fidelity to wintering areas but with potential for interannual changes. The ecological niche model highlighted the importance of open habitats with natural vegetation. Most suitable areas for the species were located in eastern Africa. Suitable areas had a patchy distribution but were relatively well included in the network of protected areas. The preferential use of habitats with natural vegetation by wintering pallid harriers and the patchiness of the most suitable areas highlight the harrier's vulnerability to land-use changes and the associated loss of natural vegetation in Africa. Conservation of harriers could be enhanced by preserving natural grasslands within protected areas and improving habitat management in the human-influenced portions of the species’ core wintering areas.
Resumo:
In order to build dynamic models for prediction and management of degraded Mediterranean forest areas was necessary to build MARIOLA model, which is a calculation computer program. This model includes the following subprograms. 1) bioshrub program, which calculates total, green and woody shrubs biomass and it establishes the time differences to calculate the growth. 2) selego program, which builds the flow equations from the experimental data. It is based on advanced procedures of statistical multiple regression. 3) VEGETATION program, which solves the state equations with Euler or Runge-Kutta integration methods. Each one of these subprograms can act as independent or as linked programs.
Resumo:
The primary goal of this research is to document local perspectives by presenting a set of commentaries and meanings, in the form of narratives, related to environmental health conceptions on an Oji-Cree reserve in Northeastern Ontario, Canada. Through an ethnographic case study, this research explores how the modern-day production of a sociocentric and ecocentric self, as ethnic marker and moral category, is contributing to environmental/community health and well-being on Native reserves. Cultural representations of personhood and community based on the Medicine Wheel model, as a cognitive model, create an ontological paradigm that promotes a holistic foundation for human behaviour and interaction, as well as healthy, sustainable communities.
Resumo:
In this paper, the authors extend and generalize the methodology based on the dynamics of systems with the use of differential equations as equations of state, allowing that first order transformed functions not only apply to the primitive or original variables, but also doing so to more complex expressions derived from them, and extending the rules that determine the generation of transformed superior to zero order (variable or primitive). Also, it is demonstrated that for all models of complex reality, there exists a complex model from the syntactic and semantic point of view. The theory is exemplified with a concrete model: MARIOLA model.
Resumo:
Frequently, population ecology of marine organisms uses a descriptive approach in which their sizes and densities are plotted over time. This approach has limited usefulness for design strategies in management or modelling different scenarios. Population projection matrix models are among the most widely used tools in ecology. Unfortunately, for the majority of pelagic marine organisms, it is difficult to mark individuals and follow them over time to determine their vital rates and built a population projection matrix model. Nevertheless, it is possible to get time-series data to calculate size structure and densities of each size, in order to determine the matrix parameters. This approach is known as a “demographic inverse problem” and it is based on quadratic programming methods, but it has rarely been used on aquatic organisms. We used unpublished field data of a population of cubomedusae Carybdea marsupialis to construct a population projection matrix model and compare two different management strategies to lower population to values before year 2008 when there was no significant interaction with bathers. Those strategies were by direct removal of medusae and by reducing prey. Our results showed that removal of jellyfish from all size classes was more effective than removing only juveniles or adults. When reducing prey, the highest efficiency to lower the C. marsupialis population occurred when prey depletion affected prey of all medusae sizes. Our model fit well with the field data and may serve to design an efficient management strategy or build hypothetical scenarios such as removal of individuals or reducing prey. TThis This sdfsdshis method is applicable to other marine or terrestrial species, for which density and population structure over time are available.