8 resultados para dynamic scale theory

em Universidad de Alicante


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Examining a team’s performance from a physical point of view their momentum might indicate unexpected turning points in defeat or success. Physicists describe this value as to require some effort to be started, but also that it is relatively easy to keep it going once a sufficient level is reached (Reed and Hughes, 2006). Unlike football, rugby, handball and many more sports, a regular volleyball match is not limited by time but by points that need to be gathered. Every minute more than one point is won by either one team or the other. That means a series of successive points enlarges the gap between the teams making it more and more difficult to catch up with the leading one. This concept of gathering momentum, or the reverse in a performance, can give the coaches, athletes and sports scientists further insights into winning and losing performances. Momentum investigations also contain dependencies between performances or questions if future performances are reliant upon past streaks. Squash and volleyball share the characteristic of being played up to a certain amount of points. Squash was examined according to the momentum of players by Hughes et al. (2006). The initial aim was to expand normative profiles of elite squash players using momentum graphs of winners and errors to explore ‘turning points’ in a performance. Dynamic systems theory has enabled the definition of perturbations in sports exhibiting rhythms (Hughes et al., 2000; McGarry et al., 2002; Murray et al., 2008), and how players and teams cause these disruptions of rhythm can inform on the way they play, these techniques also contribute to profiling methods. Together with the analysis of one’s own performance it is essential to have an understanding of your oppositions’ tactical strengths and weaknesses. By modelling the oppositions’ performance it is possible to predict certain outcomes and patterns, and therefore intervene or change tactics before the critical incident occurs. The modelling of competitive sport is an informative analytic technique as it directs the attention of the modeller to the critical aspects of data that delineate successful performance (McGarry & Franks, 1996). Using tactical performance profiles to pull out and visualise these critical aspects of performance, players can build justified and sophisticated tactical plans. The area is discussed and reviewed, critically appraising the research completed in this element of Performance Analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The process of creating an atomically defined and robust metallic tip is described and quantified using measurements of contact conductance between gold electrodes and numerical simulations. Our experiments show how the same conductance behavior can be obtained for hundreds of cycles of formation and rupture of the nanocontact by limiting the indentation depth between the two electrodes up to a conductance value of approximately 5G0 in the case of gold. This phenomenon is rationalized using molecular dynamics simulations together with density functional theory transport calculations which show how, after repeated indentations (mechanical annealing), the two metallic electrodes are shaped into tips of reproducible structure. These results provide a crucial insight into fundamental aspects relevant to nanotribology or scanning probe microscopies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, batch and dynamic adsorption tests are coupled for an accurate evaluation of CO2 adsorption performance for three different activated carbons obtained from olives stones by chemical activation followed by physical activation with CO2 at varying times, i.e. 20, 40 and 60 h. Kinetic and thermodynamic CO2 adsorption tests from simulated flue-gas at different temperature and CO2 pressure are carried out both in batch (a manometric equipment operating with pure CO2) and dynamic (a lab-scale fixed-bed column operating with CO2/N2 mixture) conditions. The textural characterization of the activated carbon samples shows a direct dependence of both micropore and ultramicropore volume on the activation time, hence AC60 has the higher contribution. The adsorption tests conducted at 273 and 293 K showed that, when CO2 pressure is lower than 0.3 bar, the lower the activation time the higher CO2 adsorption capacity and a ranking ωeq(AC20)>ωeq(AC40)>ωeq(AC60) can be exactly defined when T= 293 K. This result can be likely ascribed to a narrower pore size distribution of the AC20 sample, whose smaller pores are more effective for CO2 capture at higher temperature and lower CO2 pressure, the latter representing operating conditions of major interest for decarbonation of a flue-gas effluent. Moreover, the experimental results obtained from dynamic tests confirm the results derived from the batch tests in terms of CO2 adsorption capacity. It is important to highlight that the adsorption of N2 on the synthesized AC samples can be considered negligible. Finally, the importance of a proper analysis of characterization data and adsorption experimental results is highlighted for a correct assessment of CO2 removal performances of activated carbons at different CO2 pressure and operating temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The modeling of complex dynamic systems depends on the solution of a differential equations system. Some problems appear because we do not know the mathematical expressions of the said equations. Enough numerical data of the system variables are known. The authors, think that it is very important to establish a code between the different languages to let them codify and decodify information. Coding permits us to reduce the study of some objects to others. Mathematical expressions are used to model certain variables of the system are complex, so it is convenient to define an alphabet code determining the correspondence between these equations and words in the alphabet. In this paper the authors begin with the introduction to the coding and decoding of complex structural systems modeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last few decades, the use of cast in situ reinforced concrete sandwich panels for the construction of low- to mid-rise buildings has become more and more widespread due to several interesting properties of this construction technique, such as fast construction and high thermal and acoustic performances. Nonetheless the level of knowledge of the structural behavior of systems made of squat reinforced concrete sandwich panels is still not so consolidated, especially with reference to the seismic response, due to the lack of experimental studies. In recent years, while various experimental tests have been conducted on single panels aimed at assessing their seismic capacity, only few tests have been carried out on more complex structural systems. In this paper, the experimental results of a series of shaking-table tests performed on a full-scale 3-storey building are presented in detail. The main goal is to give to the scientific community the possibility of develop independent interpretation of these experimental results. An in-depth interpretation of the discrepancies between the analytical predictions and the experimental results is beyond the objective of this paper and is still under development. Nonetheless, preliminary interpretations indicate that both the stiffness and the strength of the building under dynamic excitation appear quite superior with respect to those expected from the results of previous pseudo-static cyclic tests conducted on simple specimens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conductance across an atomically narrow metallic contact can be measured by using scanning tunneling microscopy. In certain situations, a jump in the conductance is observed right at the point of contact between the tip and the surface, which is known as “jump to contact” (JC). Such behavior provides a way to explore, at a fundamental level, how bonding between metallic atoms occurs dynamically. This phenomenon depends not only on the type of metal but also on the geometry of the two electrodes. For example, while some authors always find JC when approaching two atomically sharp tips of Cu, others find that a smooth transition occurs when approaching a Cu tip to an adatom on a flat surface of Cu. In an attempt to show that all these results are consistent, we make use of atomistic simulations; in particular, classical molecular dynamics together with density functional theory transport calculations to explore a number of possible scenarios. Simulations are performed for two different materials: Cu and Au in a [100] crystal orientation and at a temperature of 4.2 K. These simulations allow us to study the contribution of short- and long-range interactions to the process of bonding between metallic atoms, as well as to compare directly with experimental measurements of conductance, giving a plausible explanation for the different experimental observations. Moreover, we show a correlation between the cohesive energy of the metal, its Young's modulus, and the frequency of occurrence of a jump to contact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The “Mackey Childbirth Satisfaction Rating Scale” (MCSRS) is a complete non-validated scale which includes the most important factors associated with maternal satisfaction. Our primary purpose was to describe the internal structure of the scale and validate the reliability and validity of concept of its Spanish version MCSRS-E. Methods: The MCSRS was translated into Spanish, back-translated and adapted to the Spanish population. It was then administered following a pilot test with women who met the study participant requirements. The scale structure was obtained by performing an exploratory factorial analysis using a sample of 304 women. The structures obtained were tested by conducting a confirmatory factorial analysis using a sample of 159 women. To test the validity of concept, the structure factors were correlated with expectations prior to childbirth experiences. McDonald’s omegas were calculated for each model to establish the reliability of each factor. The study was carried out at four University Hospitals; Alicante, Elche, Torrevieja and Vinalopo Salud of Elche. The inclusion criteria were women aged 18–45 years old who had just delivered a singleton live baby at 38–42 weeks through vaginal delivery. Women who had difficulty speaking and understanding Spanish were excluded. Results: The process generated 5 different possible internal structures in a nested model more consistent with the theory than other internal structures of the MCSRS applied hitherto. All of them had good levels of validation and reliability. Conclusions: This nested model to explain internal structure of MCSRS-E can accommodate different clinical practice scenarios better than the other structures applied to date, and it is a flexible tool which can be used to identify the aspects that should be changed to improve maternal satisfaction and hence maternal health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatially accelerating beams are non-diffracting beams whose intensity is localized along curvilinear trajectories, also incomplete circular trajectories, before diffraction broadening governs their propagation. In this paper we report on numerical simulations showing the conversion of a high-numerical-aperture focused beam into a nonparaxial shape-preserving accelerating beam having a beam-width near the diffraction limit. Beam shaping is induced near the focal region by a diffractive optical element that consists of a non-planar subwavelength grating enabling a Bessel signature.