8 resultados para distinct element method
em Universidad de Alicante
Resumo:
We analyzed surface-wave propagation that takes place at the boundary between a semi-infinite dielectric and a multilayered metamaterial, the latter with indefinite permittivity and cut normally to the layers. Known hyperbolization of the dispersion curve is discussed within distinct spectral regimes, including the role of the surrounding material. Hybridization of surface waves enable tighter confinement near the interface in comparison with pure-TM surface-plasmon polaritons. We demonstrate that the effective-medium approach deviates severely in practical implementations. By using the finite-element method, we predict the existence of long-range oblique surface waves.
Resumo:
In the present work, a three-dimensional (3D) formulation based on the method of fundamental solutions (MFS) is applied to the study of acoustic horns. The implemented model follows and extends previous works that only considered two-dimensional and axisymmetric horn configurations. The more realistic case of 3D acoustic horns with symmetry regarding two orthogonal planes is addressed. The use of the domain decomposition technique with two interconnected sub-regions along a continuity boundary is proposed, allowing for the computation of the sound pressure generated by an acoustic horn installed on a rigid screen. In order to reduce the model discretization requirements for these cases, Green’s functions derived with the image source methodology are adopted, automatically accounting for the presence of symmetry conditions. A strategy for the calculation of an optimal position of the virtual sources used by the MFS to define the solution is also used, leading to improved reliability and flexibility of the proposed method. The responses obtained by the developed model are compared to reference solutions, computed by well-established models based on the boundary element method. Additionally, numerically calculated acoustic parameters, such as directivity and beamwidth, are compared with those evaluated experimentally.
Resumo:
This paper shows the analysis results obtained from more than 200 finite element method (FEM) models used to calculate the settlement of a foundation resting on two soils of differing deformability. The analysis considers such different parameters as the foundation geometry, the percentage of each soil in contact with the foundation base and the ratio of the soils’ elastic moduli. From the described analysis, it is concluded that the maximum settlement of the foundation, calculated by assuming that the foundation is completely resting on the most deformable soil, can be correlated with the settlement calculated by FEM models through a correction coefficient named “settlement reduction factor” (α). As a consequence, a novel expression is proposed for calculating the real settlement of a foundation resting on two soils of different deformability with maximum errors lower than 1.57%, as demonstrated by the statistical analysis carried out. A guide for the application of the proposed simple method is also explained in the paper. Finally, the proposed methodology has been validated using settlement data from an instrumented foundation, indicating that this is a simple, reliable and quick method which allows the computation of the maximum elastic settlement of a raft foundation, evaluates its suitability and optimises its selection process.
Resumo:
The mechanical behaviour of transventilated façades performed by natural stone is necessarily based on the correct execution of both anchoring elements on the stone cladding as in the ones corresponding to the enclosure support, either with brick masonry walls or reinforced concrete walls. In the case studied in the present work, the origin of the damages suffered on the façade of a building located in Alcoy has been analyzed, where the detachment of part of the outer enclosure occurred. This enclosure is a transventilated façade formed by Bateig Blue stone tiles. To this end, “in situ” tests of the anchoring systems employed have been performed, as well as laboratory tests of mechanical characterization of the material and of different types of anchor, comparing these results with those obtained in both the simplified analytical models of continuum mechanics as developed by the Finite Element Method (FEM).
Resumo:
We report on a procedure to improve the resolution of far-field imaging by using a neighboring high-index medium that is coated with a left-handed metamaterial. The resulting plot can also exhibit an enhanced transmission by considering proper conditions to retract backscattering. Based on negative refraction, geometrical aberrations are considered in detail since they may cause a great impact in this sort of diffraction-unlimited imaging by reducing its resolution power. We employ a standard aberration analysis to refine the asymmetric configuration of metamaterial superlenses. We demonstrate that low-order centrosymmetric aberrations can be fully corrected for a given object plane. For subwavelength-resolution imaging, however, high-order aberrations become of relevance, which may be balanced with defocus. Not only the point spread function but also numerical simulations based on the finite-element method support our theoretical analysis, and subwavelength resolution is verified in the image plane.
Resumo:
Recent progress is emerging on nondiffracting subwavelength fields propagating in complex plasmonic nanostructures. In this paper, we present a thorough discussion on diffraction-free localized solutions of Maxwell’s equations in a periodic structure composed of nanowires. This self-focusing mechanism differs from others previously reported, which lie on regimes with ultraflat spatial dispersion. By means of the Maxwell–Garnett model, we provide a general analytical expression of the electromagnetic fields that can propagate along the direction of the cylinder’s axis, keeping its transverse waveform unaltered. Numerical simulations based on the finite element method support our analytical approach. In particular, moderate filling fractions of the metallic composite lead to nonresonant-plasmonic spots of light propagating with a size that remains far below the limit of diffraction.
Resumo:
En este trabajo se describe el proceso llevado a cabo para analizar numéricamente mediante el método de los elementos finitos (MEF) el comportamiento vibratorio del conjunto móvil de un altavoz dinámico de bobina con doble suspensión inferior y en ausencia de la superior. El estudio se centra en el rango de baja frecuencia. El calibrado del modelo se realiza en base a medidas experimentales de la frecuencia de resonancia y desplazamiento del diafragma. Se hace énfasis en la importancia de los factores de participación asociados a la fuerza de excitación y en los cambios que se producen en estos al introducir fuerzas no equilibradas. Así mismo, el análisis proporciona datos para decidir sobre la distancia entre suspensiones, su número óptimo de pliegues y la ubicación de las trencillas, siendo estos parámetros de gran interés en el diseño de este tipo de altavoces.
Resumo:
Las fórmulas basadas en la teoría de la elasticidad son ampliamente utilizadas para el cálculo de asientos de cimentaciones, ya que la totalidad de la normativa geotécnica recomienda su empleo. No obstante, estos métodos no cubren todas las situaciones geotécnicamente posibles ya que frecuentemente las condiciones geológicas son complejas. En este trabajo se analiza la influencia de la presencia de una capa rígida inclinada en los asientos elásticos de una cimentación superficial. Para ello se han resuelto 273 modelos tridimensionales no lineales de elementos finitos, variando los parámetros clave del problema: la inclinación y la profundidad de la capa rígida y la rigidez de la cimentación. Finalmente, se ha realizado un análisis estadístico de los resultados de los modelos y se ha propuesto una fórmula que puede ser utilizada en el cálculo de asientos por métodos elásticos, para tener en consideración la presencia de una capa rígida inclinada en profundidad.