5 resultados para dimensioning of the beam structure
em Universidad de Alicante
Resumo:
Activated carbons prepared from petroleum pitch and using KOH as activating agent exhibit an excellent behavior in CO2 capture both at atmospheric (∼168 mg CO2/g at 298 K) and high pressure (∼1500 mg CO2/g at 298 K and 4.5 MPa). However, an exhaustive evaluation of the adsorption process shows that the optimum carbon structure, in terms of adsorption capacity, depends on the final application. Whereas narrow micropores (pores below 0.6 nm) govern the sorption behavior at 0.1 MPa, large micropores/small mesopores (pores below 2.0–3.0 nm) govern the sorption behavior at high pressure (4.5 MPa). Consequently, an optimum sorbent exhibiting a high working capacity for high pressure applications, e.g., pressure-swing adsorption units, will require a poorly-developed narrow microporous structure together with a highly-developed wide microporous and small mesoporous network. The appropriate design of the preparation conditions gives rise to carbon materials with an extremely high delivery capacity ∼1388 mg CO2/g between 4.5 MPa and 0.1 MPa. Consequently, this study provides guidelines for the design of carbon materials with an improved ability to remove carbon dioxide from the environment at atmospheric and high pressure.
Resumo:
Corneal and anterior segment imaging techniques have become a crucial tool in the clinical practice of ophthalmology, with a great variety of applications, such as corneal curvature and pachymetric analysis, detection of ectatic corneal conditions, anatomical study of the anterior segment prior to phakic intraocular lens implantation, or densitometric analysis of the crystalline lens. From the Placido-based systems that allow only a characterization of the geometry of the anterior corneal surface to the Scheimpflug photography-based systems that provide a characterization of the cornea, anterior chamber, and crystalline lens, there is a great variety of devices with the capability of analyzing different anatomical parameters with very high precision. To date, Scheimpflug photography-based systems are the devices providing the more complete analysis of the anterior segment in a non-invasive way. More developments are required in anterior segment imaging technologies in order to improve the analysis of the crystalline lens structure as well as the ocular structures behind the iris in a non-invasive way when the pupil is not dilated.
Resumo:
Atomic contacts made of ferromagnetic metals present zero-bias anomalies in the differential conductance due to the Kondo effect. These systems provide a unique opportunity to perform a statistical analysis of the Kondo parameters in nanostructures since a large number of contacts can be easily fabricated using break-junction techniques. The details of the atomic structure differ from one contact to another so a large number of different configurations can be statistically analyzed. Here we present such a statistical analysis of the Kondo effect in atomic contacts made from the ferromagnetic transition metals Ni, Co, and Fe. Our analysis shows clear differences between materials that can be understood by fundamental theoretical considerations. This combination of experiments and theory allows us to extract information about the origin and nature of the Kondo effect in these systems and to explore the influence of geometry and valence in the Kondo screening of atomic-sized nanostructures.
High-Resolution N2 Adsorption Isotherms at 77.4 K: Critical Effect of the He Used During Calibration
Resumo:
Accurate characterization of the microporous structure in porous solids is of paramount importance for several applications such as energy and gas storage, nanoconfinement reactions, and so on. Among the different techniques for precise textural characterization, high-precision gas adsorption measurement of probe molecules at cryogenic temperatures (e.g., N2 at 77.4 K and Ar at 87.3 K) is the most widely used, after appropriate calibration of the sample holder with a probe gas, which does not experience physisorption processes. Although traditionally helium has been considered not to be adsorbed in porous solids at cryogenic temperatures, here we show that even at 77.4 K (high above its boiling temperature, 4 K) the use of He in the calibration step can give rise to erroneous interpretations when narrow micropores/constrictions are present.
Resumo:
This study examined the reliability and validity evidence drawn from the scores of the French version of the Questionnaire about Interpersonal Difficulties for Adolescents (QIDA) in a sample of 957 adolescents (48.5% boys) ranging in age from 11 to 18 years (M = 14.48, SD = 1.85). A principal axis factoring (PAF) and confirmatory factor analyses (CFA) were performed to determine the fit of the factor structure of scores on the QIDA. PAF and CFA replicated the previously identified correlated five-factor structure of the QIDA: Assertiveness, Heterosexual Relationships, Public Speaking, Family Relationships, and Close Friendships. The QIDA yielded acceptable reliability scores for French adolescents. Validity evidence of QIDA was also established through correlations with scores on the School Anxiety Inventory and the Social Anxiety Scale for Adolescents. Most of the correlations were positive and exceeded the established criteria of statistical significance, but the magnitude of these varied according to the scales of the QIDA. Results supported the reliability and validity evidence drawn from the scores of the French version of the QIDA.